

MANUEL DE L'UTILISATEUR | FR

NOVA

ASI à double conversion en ligne

10 à 40 kVA

Triphasé/Triphasé

Accedi al link ed utilizza la password per scaricare il manuale in Italiano

Access the link and use the password to download the manual in English

Accédez au lien et utilisez le mot de passe pour télécharger le manuel en Français

Rufen Sie den Link auf und verwenden Sie das Passwort, um das Handbuch auf Deutsch herunterzuladen

Indice

Préface	6
Usage	6
Utilisateurs	6
Note:	6
Précautions de sécurité	7
Définition du message de sécurité	7
Étiquette d'avertissement	7
Consignes de sécurité	7
Déboguer et exploiter	8
Entretien et remplacement	9
Sécurité de la batterie	9
Mise au rebut	10
1. Structure et introduction l'ASI	11
1.1 Structure de l'ASI	11
1.1.1 Configuration de l'ASI	11
1.1.2 Versions d'ASI	11
1.1.3 Détails des vues avant et arrière de l'UPSs	14
1.2 Présentation du produit	16
1.2.1 Description du système ASI	16
1.2.2 Mode de fonctionnement	17
2. Installation	20
2.1 Emplacement	20
2.1.1 Environnement d'installation	20
2.1.2 Sélection du site	20
2.1.3 Taille et poids	20
2.2 Déchargement et déballage	21
2.2.1 Déplacement et déballage de l'armoire	21
2.3 Positionnement	23
2.3.1 Armoire de positionnement	23
2.4 Batterie	24
2.5 Entrée de câble	25
2.6 Câbles d'alimentation	26
2.6.1 Spécifications	26
2.6.2 Spécifications pour le terminal de câbles d'alimen	tation27
2.6.3 Disjoncteur	27
2.6.4 Connexion des câbles d'alimentation	28
2.7 Câbles de commande et de communication	29
2.7.1 Interface de contact à sec	29
2.7.2 Interface de communication	38
3. Panneau de commande et d'affichage LCD	39
3.1 Introduction	39
3.2 Écran ICD	30

3.3 Menu principal	40
4. Opérations	49
4.1 Démarrage de l'ASI	49
4.1.1 Démarrage en mode normal	49
4.1.2 Démarrer à partir de la batterie	51
4.2 Procédure de commutation entre les modes de fonctionnement	51
4.2.1 Passage de l'ASI en mode batterie à partir du mode normal	51
4.2.2 Passage de l'ASI du mode normal en mode dérivation	51
4.2.3 Passage de l'ASI à partir du mode dérivation en mode normal	52
4.2.4 Passage de l'ASI à partir du mode normal en mode de dérivation de	maintenance52
4.2.5 Passage de l'ASI à partir du mode de dérivation de maintenance en	mode normal53
4.3 Maintenance de la batterie	53
4.4 EPO	54
5. Maintenance	55
5.1 Précautions	55
5.2 Instructions pour la maintenance de l'ASI	55
5,3. Instructions pour la maintenance de la chaîne de batteries	55
6. Caractéristiques techniques du produit	57
6.1 Normes applicables	57
6.2 Caractéristiques environnementales	57
6.3 Caractéristiques mécaniques	58
6.4 Caractéristiques électriques	58
6.4.1 Caractéristiques électrique du redresseur d'entrée	58
6.4.2 Caractéristiques électriques de la batterie	59
6.4.3 Caractéristiques électriques de sortie de l'ASI	60
6.4.4 Caractéristiques éléctriques de l'entrée de dérivation d'alimentati	on 60
6.5 Efficacité	61
6.6 Affichage et interface	61
Annexe. A Installation de batteries internes	62
Annexe. B Instructions du système parallèle pour l'ASI	67
Annexe C Instructions nour le retour de tension	77

Préface

Usage

Le manuel contient des informations sur l'installation, l'utilisation, le fonctionnement et l'entretien de l'ASI. Veuillez lire attentivement ce manuel avant l'installation.

Utilisateurs

Personne autorisée

Note:

Notre société fournit une gamme complète de support technique et de service. Les clients peuvent contacter notre bureau local ou notre centre de service à la clientèle pour obtenir de l'aide.

Le manuel sera mis à jour irrégulièrement, en raison de la mise à niveau du produit ou d'autres raisons. Sauf accord contraire, le manuel n'est utilisé que comme guide pour les utilisateurs et toutes les déclarations ou informations contenues dans ce manuel ne donnent aucune garantie expresse ou implicite.

Précautions de sécurité

Ce manuel contient des informations concernant l'installation et le fonctionnement de l'ASI. Veuillez lire attentivement ce manuel avant l'installation.

L'ASI ne peut pas être mis en service tant qu'il n'a pas été mis en service par des ingénieurs agréés par le fabricant (ou son agent). Ne pas le faire pourrait entraîner un risque pour la sécurité du personnel, un dysfonctionnement de l'équipement et l'invalidation de la garantie.

Définition du message de sécurité

Danger : Des blessures humaines graves, voire mortelles, peuvent être causées si cette exigence n'est pas respectée.

Avertissement : Des blessures ou des dommages matériels peuvent être causés, si cette exigence est ignorée.

Attention : Des dommages matériels, une perte de données ou de mauvaises performances peuvent être causés, si cette exigence est ignorée.

Ingénieur de mise en service: L'ingénieur qui installe ou fait fonctionner l'équipement doit être bien formé en électricité et en sécurité, et qui est familier avec le fonctionnement, le débogage et l'entretien de l'équipement.

Étiquette d'avertissement

L'étiquette d'avertissement indique la possibilité de blessures ou de dommages à l'équipement et indique la marche à suivre pour éviter le danger. Dans ce manuel, il existe trois types d'étiquettes d'avertissement comme ci-dessous.

Étiquettes	Descriptif				
Danger	Des blessures humaines graves, voire mortelles, peuvent être causées si cette exigence n'est pas respectée.				
Warning	Des blessures ou des dommages matériels peuvent être causés si cette exigence n'est pas respectée.				
Attention	Des dommages matériels, une perte de données ou de mauvaises performances peuvent être causés, si cette exigence est ignorée.				

Consignes de sécurité

Danger Danger	 Effectué uniquement par des ingénieurs de mise en service. Cet ASI est conçu pour des applications commerciales et industrielles uniquement, et n'est pas destiné à une utilisation dans des dispositifs ou des systèmes de survie.
Warning	• Lisez attentivement toutes les étiquettes d'avertissement avant utilisation et suivez les instructions.

•	Lorsque le système est en marche, ne touchez pas la surface avec cette étiquette, pour éviter toute blessure d'échaudure.
•	Composants sensibles aux décharges électrostatiques à l'intérieur de l'ASI, des mesures anti-ESD doivent être prises avant la manipulation.

Déplacer et installer

A	•	Gardez l'équipement à l'écart de la source de chaleur ou des sorties d'air.
Danger	•	En cas d'incendie, utilisez uniquement un extincteur à poudre sèche ou à
		gaz, tout extincteur à liquide peut provoquer un choc électrique.
	•	Ne démarrez pas le système si des dommages ou des pièces anormales
A		sont fondés.
Warning Warning	•	Contactez l'ASI avec un matériau ou des mains humides peut être soumis
		à un choc électrique.
	•	Utilisez les installations appropriées pour manipuler et installer l'ASI. Des
		chaussures de protection, des vêtements de protection et d'autres
Assention		dispositifs de protection sont nécessaires pour éviter les blessures.
Attention	•	Pendant le positionnement, gardez l'ASI loin des chocs ou des vibrations.
	•	Installez l'ASI dans l'environnement approprié, plus de détails à la section
		2.3.

Déboguer et exploiter

D anger	 Assurez-vous que le câble de mise à la terre est bien relié avant de brancher les câbles d'alimentation, le câble de mise à la terre et le câble neutre doivent être conformes aux pratiques des codes locaux et nationaux. Avant de déplacer ou de rebrancher les câbles, assurez-vous de couper toutes les sources d'alimentation d'entrée et attendez au moins 10 minutes pour une décharge interne. Utilisez un multimètre pour mesurer la tension sur les bornes et assurez-vous que la tension est
_	 inférieure à 36 V avant le fonctionnement. Le courant de fuite à la terre de la charge sera transporté par RCCB ou
Attention	 RCD. La vérification et l'inspection initiales doivent être effectuées après un stockage prolongé de l'ASI.

Entretien et remplacement

- Toutes les procédures de maintenance et d'entretien de l'équipement impliquant un accès interne nécessitent des outils spéciaux ; veuillez les confier à un personnel qualifié. Les composants accessibles en ouvrant le couvercle de protection avec des outils ne peuvent pas être entretenus par l'utilisateur.
- Cet ASI complet est conforme aux « exigences générales et de sécurité de la CEI/EN62040-1 pour une utilisation dans l'ASI de la zone d'accès de l'opérateur ». Des tensions dangereuses sont présentes dans la zone de la batterie.
- Cependant, le risque de contact avec ces hautes tensions est minimisé pour le personnel non en service. Étant donné que le composant à tension dangereuse ne peut être touché qu'en ouvrant le couvercle de protection avec un outil, la possibilité de toucher le composant à haute tension est minimisée. Aucun risque n'existe pour le personnel lors de l'utilisation normale de l'équipement, en suivant les procédures d'utilisation recommandées dans ce manuel.

Sécurité de la batterie

- Toutes les procédures de maintenance et d'entretien de la batterie impliquant un accès interne nécessitent des outils ou des clés spéciaux; veuillez les confier à du personnel qualifié.
- Lorsqu'elles sont connectées ensemble, la tension de la borne de la batterie dépasse 400 Vcc et est potentiellement létale.
- Les fabricants de batteries fournissent des détails sur les précautions nécessaires à observer lors du travail sur, ou à proximité d'une grande série d'éléments de batterie. Ces précautions doivent être suivies implicitement à tout moment. Une attention particulière devrait être accordée aux recommandations concernant les conditions environnementales locales et la fourniture de vêtements de protection, de premiers secours et d'installations de lutte contre l'incendie.
- La température ambiante est un facteur majeur dans la détermination de la durée de vie de la batterie. La température nominale de fonctionnement de la batterie est de 20°C. Un fonctionnement au-dessus de cette température réduira la durée de vie de la batterie. Changez périodiquement la batterie conformément aux manuels d'utilisation de la batterie pour assurer le temps de secours de l'ASI.
- Remplacez les piles uniquement avec le même type et le même numéro, ou cela peut provoquer une explosion ou de mauvaises performances.
- Lors de la connexion de la batterie, suivez les précautions pour un fonctionnement à haute tension avant d'accepter et d'utiliser la batterie, vérifiez l'apparence des batteries. Si l'emballage est endommagé, si la borne de la batterie est corrodée ou rouillée ou si la coque est cassée,

déformée ou présente des fuites, remplacez-la par un nouveau produit. Sinon, une réduction de la capacité de la batterie, une fuite électrique ou un incendie peuvent être causés.

- Avant d'utiliser la batterie, retirez les bijoux tels que bague, montre, collier, le bracelet et tout autre bijou métallique.
- Portez des gants en caoutchouc.
- Une protection oculaire doit être portée pour éviter les blessures causées par des arcs électriques accidentels.
- Utilisez uniquement des outils (par exemple une clé) avec des poignées isolées.
- Les batteries sont très lourdes. Veuillez manipuler et soulever la batterie avec la méthode appropriée pour éviter toute blessure ou dommage à la borne de la batterie.
- Evitez de décomposer, modifier ou endommager la batterie. Sinon, un court-circuit de la batterie, une fuite ou même des blessures humaines peuvent être causés.
- La batterie contient de l'acide sulfurique. En fonctionnement normal, tout l'acide sulfurique est refermé à l'intérieur de la batterie. Cependant, lorsque le boîtier de la batterie se casse, cet acide s'échappe de la batterie. Par conséquent, veillez à porter une paire de lunettes de protection, des gants en caoutchouc et un tablier lorsque vous utilisez la batterie. Sinon, vous pouvez devenir aveugle si de l'acide pénètre dans vos yeux et votre peau peut être endommagée par l'acide.
- A la fin de la vie de la batterie, la batterie peut avoir un court-circuit interne, un drain électrolytique et une érosion des plaques positives/négatives.
 - Si cette condition persiste, la température de la batterie peut être hors de contrôle, gonfler ou fuir. Assurez-vous de remplacer la batterie avant que ces phénomènes ne se produisent.
- Si une batterie fuit de l'électrolyte ou est endommagée physiquement,
 veuillez la remplacér, puis la stocker dans un récipient résistant à l'acide sulfurique et l'éliminer conformément aux réglementations locales.
- Si l'électrolyte entre en contact avec la peau, la zone affectée doit être immédiatement lavée à l'eau.

Mise au rebut

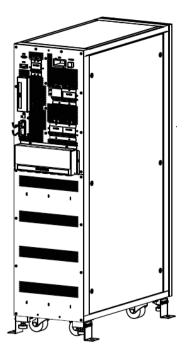
• Jetez la batterie usagée conformément aux instructions locales.

1. Structure et introduction l'ASI

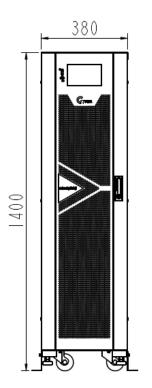
1.1 Structure de l'ASI

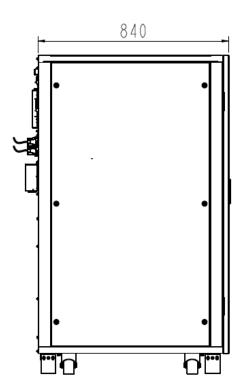
1.1.1 Configuration de l'ASI

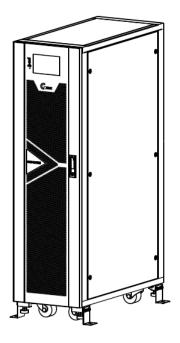
Les configurations l'ASI sont fournies dans le tableau 1-1.

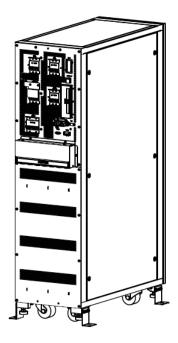

Tableau 1-1 Configuration de l'ASI

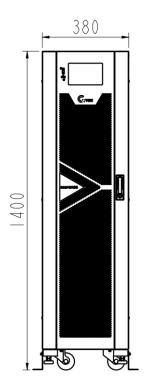
Article	Composants	Quantité (s)	Remarque :
	Disjoncteurs	5	Standard
	Entrée double		Standard
10-40 kVA	Carte parallèle,	1	Optionnel
	Carte de contact sèche	1	Standard
	Démarrage à froid		Optionnel
	Filtre à poussière	1	Optionnel
	SNMP	1	Optionnel

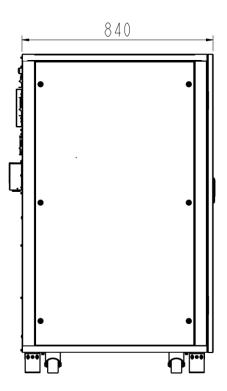

1.1.2 Versions d'ASI


Les versions d'ASI sont présentées dans la figure 1-1.

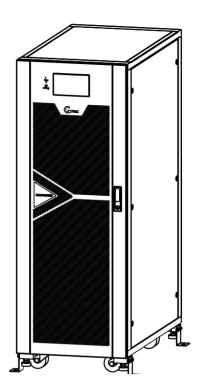


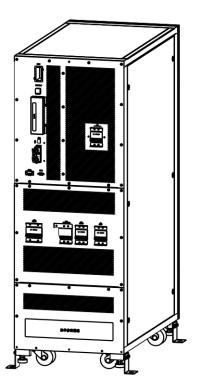






(a) Version à 10 kVA/15 kVA (unité : mm)





(b) Version à 20 kVA (unité : mm)

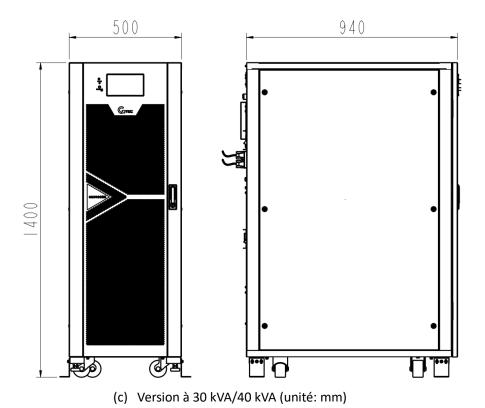
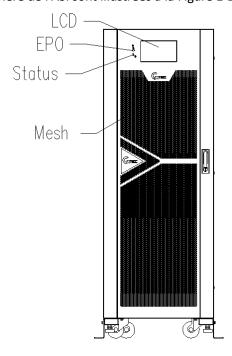
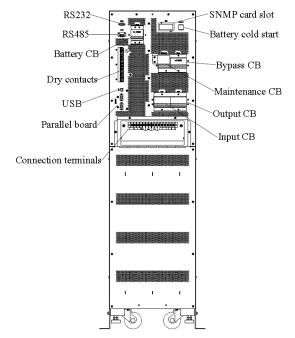
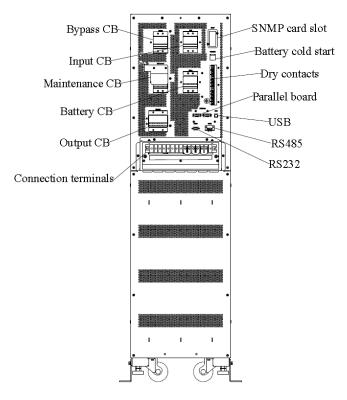



Figure 1-1 Version de l'ASI

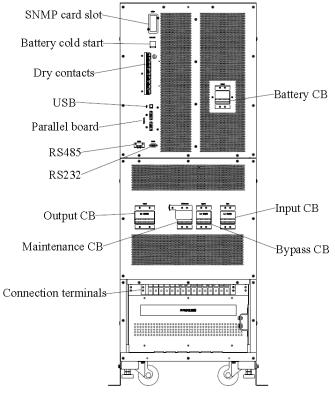
•


1.1.3 Détails des vues avant et arrière de l'UPSs

Les vues avant et arrière de l'ASI sont illustrées à la Figure 1-2.



(a) Détails de la vue de face de la version à 10-40 kVA


(b) Détails de la vue arrière pour 10 kVA et 15 kVA

(c) Les détails de la vue arrière pour la version à 20 kVA

Note : Le port USB est disponible dans la carte parallèle

(d) Les détails de la vue arrière pour les modèles 30 kVA et 40 kVA

Figure 1-2 Détails des vues avant et arrière de l'ASI

1.2 Présentation du produit

1.2.1 Description du système ASI

L'ASI se compose de la partie suivante : redresseur, chargeur, onduleur, commutateur de dérivation statique et disjoncteur de dérivation de maintenance. Une ou plusieurs chaînes de batteries doivent être installées à l'intérieur, pour pouvoir fournir de l'énergie de secours une fois que l'utilitaire tombe en panne. Les structures de l'ASI sont illustrées dans la Figure 1-3.

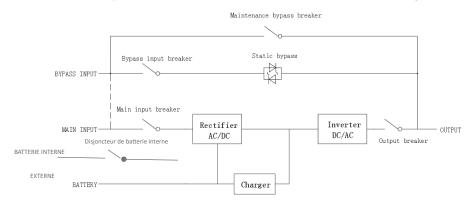


Figure 1-3 Schéma fonctionnel de l'ASI

1.2.2 Mode de fonctionnement

L'ASI est un groupe d'alimentation ininterruptible de secours en ligne à double conversion qui permet de fonctionner dans les modes suivants :

- Mode Normal
- Mode batterie
- Mode de dérivation
- Mode maintenance (by-pass manuel)
- Mode ECO
- Mode convertisseur de fréquence

1.2.2.1 Mode normal

L'ASI alimente en continu en courant alternatif la charge critique en courant alternatif. Le redresseur reçoit l'alimentation de la source d'entrée secteur CA et alimente l'ASI en courant continu, tandis que le chargeur reçoit l'alimentation en courant continu du redresseur et charge ses batteries de secours associées.

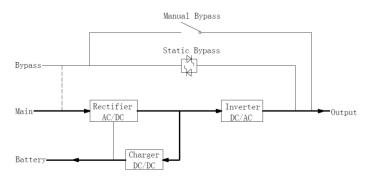


Figure 1-4 Schéma fonctionnel en mode normal

1.2.2.2 Mode batterie

En cas de panne de l'alimentation secteur CA, l'ASI obtiendra l'alimentation des batteries et alimentera en courant alternatif la charge CA critique. Il n'y a pas d'interruption de la charge critique. Une fois l'alimentation secteur rétablie, l'ASI passe automatiquement en mode normal sans intervention des utilisateurs.

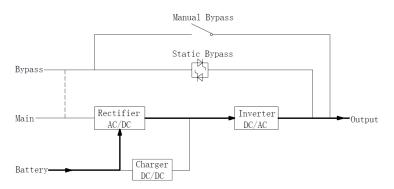


Figure 1-5 Schéma fonctionnel du mode batterie

Note: Avec la fonction «Démarrage à froid de la batterie », l'ASI pourrait démarrer sans utilitaire.

1.2.2.3 Mode de dérivation

Si la capacité de surcharge de l'ASI est dépassée en mode normal, ou si l'ASI devient indisponible pour une raison quelconque, le commutateur statique effectuera un transfert de la charge de l'ASI à la source de dérivation, sans interruption à la charge c.a. critique. Si l'ASI est asynchrone par rapport la source de dérivation, il y aurait une interruption dans le transfert de l'ASI vers la dérivation. Ceci permet d'éviter un courant croisé important dû à la mise en parallèle de sources de courant alternatif non synchronisées. Cette interruption est programmable, mais le réglage typique est inférieur aux 3/4 d'un cycle électrique, par exemple inférieur à 15 ms sur un système de 50 Hz ou inférieur à 12,5 ms sur un système 60 Hz. L'action de transfert/retransfert peut être effectuée par la commande à travers l'écran du moniteur.

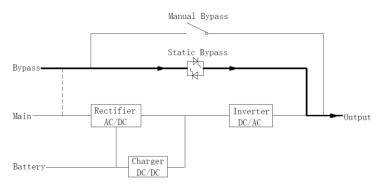


Figure 1-6 Schéma fonctionnel du mode de dérivation

1.2.2.4 Mode de maintenance (dérivation manuelle)

Un commutateur de dérivation manuelle est disponible pour assurer la continuité de l'alimentation de la charge critique lorsque l'ASI devient indisponible, par exemple pendant une procédure de maintenance.

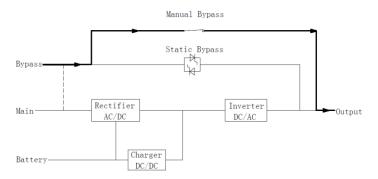


Figure 1-7 Schéma fonctionnel du mode de maintenance

Danger

En mode Maintenance, des tensions dangereuses sont présentes sur la borne des bornes d'entrée, de sortie, de neutre, de batterie et au niveau des disjoncteurs, même avec tous les commutateurs et l'écran LCD éteint.

1.2.2.5 Mode ECO

Pour améliorer son efficacité le système ASI fonctionne en mode dérivation en temps normal, et le groupe électrogène est en veille, lorsque l'utilitaire de la dérivation tombe en panne, l'ASI passe en mode batterie etle groupe électrogène alimente la charge.

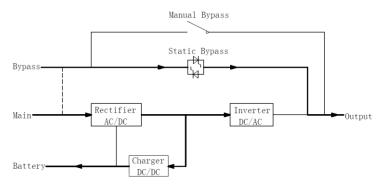


Figure 1-8 Schéma fonctionnel du mode ECO

Il y a un court temps d'interruption (moins de 10 ms) lors du passage du mode ECO au mode batterie, veuillez vous assurer que l'interruption n'a pas d'effet sur les charges.

1.2.2.6 Mode convertisseur de fréquence

En paramétrant l'ASI sur «Mode convertisseur de fréquence», l'ASI présente une sortie stable de fréquence fixe (50 ou 60 Hz), et le commutateur statique de dérivation n'est pas disponible.

2. Installation

2.1 Emplacement

Étant donné que chaque site/pays a ses propres exigences, les instructions d'installation de cette section servent de guide pour les procédures et pratiques générales qui doivent être observées par le technicien d'installation.

2.1.1 Environnement d'installation

L'ASI est destiné à une installation intérieure et utilise un refroidissement par convection forcée par des ventilateurs internes. Veuillez vous assurer qu'il y a suffisamment d'espace pour la ventilation et le refroidissement de l'ASI.

Tenez l'ASI loin de l'eau, de la chaleur et des matériaux corrosifs inflammables et explosifs. Évitez d'installer l'ASI dans l'environnement avec de la lumière directe du soleil, de la poussière, des gaz volatils, des matériaux corrosifs et d'une salinité élevée.

Évitez d'installer l'ASI dans l'environnement avec de la saleté conductrice.

La meilleure température abiante pour le fonctionnement des batteries va de 20 à25°C. La température dépassant 25°C réduira la durée de vie de la batterie, et un fonctionnement en dessous 20°C en réduira la capacité.

La batterie générera une petite quantité d'hydrogène et d'oxygène pendant la charge ; assurez-vous que le volume d'air frais de l'environnement d'installation de la batterie répond aux exigences EN50272-2001 et EN-IEC62485-2.

Lorsque des batteries externes sont utilisées, les disjoncteurs (ou fusibles) de la batterie doivent être montés aussi près que possible des batteries, et les câbles de connexion doivent être aussi courts que possible.

2.1.2 Sélection du site

Assurez-vous que le sol ou la plate-forme d'installation peut supporter le poids de l'armoire l'ASI, des batteries et des racks de batteries.

Pas de vibration et moins de 5 degrés d'inclinaison horizontalement.

L'équipement doit être stocké dans un local afin de le protéger contre l'humidité excessive et les sources de chaleur.

La batterie doit être stockée dans un endroit sec et frais avec une bonne ventilation. La température de stockage la plus appropriée va de 5°C à 25°C.

2.1.3 Taille et poids

Assurez-vous qu'il y a suffisamment d'espace pour le placement de l'ASI. La pièce réservée à l'armoire l'ASI est représentée à la Figure 2-1.

Attention

Assurez-vous qu'il y a au moins 0,8 m à l'avant de l'armoire pour un accès plus facile de l'ASI, et au moins 0,5 m en arrière pour la ventilation.

La pièce réservée à l'armoire est illustrée à la figure 2-1.

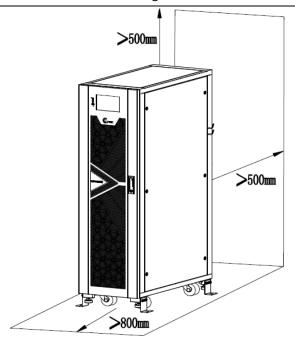


Figure 2-1 Espace réservé à l'armoire (Unité : mm)

La dimension et le poids de l'armoire l'ASI sont indiqués dans le tableau 2-1

Dimension (L*P*H) **Poids** poids maximum modèle sans batteries avec batteries mm 10 kVA 380*840*1400 100 kg 424 kg (3 strings) 15 kVA 380*840*1400 100 kg 424 kg (3 strings) 20 kVA 380*840*1400 100 kg 424 kg (3 strings) 30 kVA 500*940*1400 140kg 572 kg (4 strings) 140kg 572 kg (4 strings) 40 kVA 500*940*1400

Tableau 1.1 Poids de l'armoire

2.2 Déchargement et déballage

2.2.1 Déplacement et déballage de l'armoire

Les étapes à suivre pour déplacer et déballer l'armoire sont les suivantes :

- 1. Vérifiez si l'emballage est endommagé. (Le cas échéant, contactez le transporteur)
- 2. Transporter l'équipement au site désigné par chariot élévateur, comme le montre la figure 2-2.

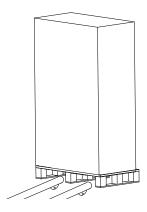


Figure 2-2 Transport vers le site désigné

3. Déballez l'emballage comme indiqué à la figure 2-3.

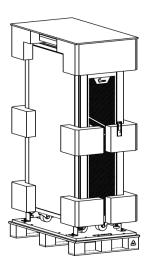


Figure 2-3 Démonter la caisse

4. Retirez la mousse de protection autour de l'armoire comme indiqué sur la Figure 2-4.

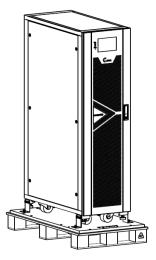


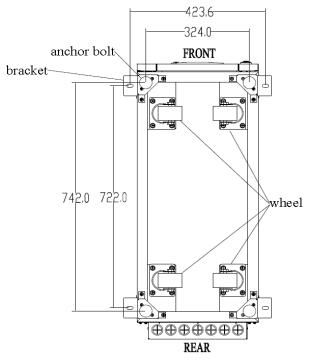
Figure 2-4 enlevez la mousse de protection

5. Vérifiez l'ASI.

- (a) Inspectez visuellement si l'ASI a été endommagée pendant le transport. Le cas échéant, contactez le transporteur.
- (b) Vérifiez l'ASI avec la liste des marchandises. Si des articles ne sont pas inclus dans la liste, contactez notre entreprise ou le bureau local.
- 6. Démonter le boulon qui relie l'armoire et la palette en bois après le démontage.
- 7. Déplacer l'armoire en position d'installation.

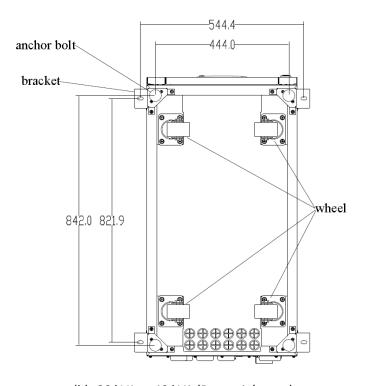
Attention

Faites attention lors du retrait pour éviter de rayer l'équipement.


Attention

Les déchets de déballage devraient être éliminés pour répondre à la demande de protection de l'environnement.

2.3 Positionnement


2.3.1 Armoire de positionnement

L'armoire l'ASI a deux façons de se soutenir : L'une est de se soutenir temporairement par les quatre roues en bas, ce qui facilite le réglage de la position de l'armoire. L'autre manière ce sont les boulons d'ancra qui assurent le support permanent de l'armoire après avoir réglé la position du cabinet. La structure de support est illustrée à la figure 2-5.

(a) 10 à 20 kVA (Bas, unité: mm)

(b) 30 kVA et 40 kVA (Bas, unité: mm)

Figure 2-4 Structure de support (vue de dessous)

Les étapes pour positionner l'armoire sont les suivantes :

- 1. Assurez-vous que la structure de support est en bon état et que le plancher de montage est lisse et solide.
- 2. Rétractez les boulons d'ancrage en les tournant dans le sens inverse des aiguilles d'une montre à l'aide d'une clé, l'armoire est alors supportée par les quatre roues.
- 3. Réglez l'armoire à la bonne position à l'aide des roues de support.
- 4. Posez les boulons d'ancrage en les tournant dans le sens des aiguilles d'une montre à l'aide d'une clé, l'armoire est ensuite soutenue par les quatre boulons d'ancrage.
- 5. Assurez-vous que les quatre boulons d'ancrage sont à la même hauteur et que l'armoire est fixe et immobile.

Attention

Un équipement auxiliaire est nécessaire lorsque le plancher de montage n'est pas suffisamment solide pour supporter l'armoire, ce qui permet de mieux repartir le poids sur une plus grande surface. Par exemple, couvrez le sol avec une plaque de fer ou augmentez la surface de support des boulons d'ancrage.

2.4 Batterie

L'ASI peut contenir des batteries internes, mais il dispose également de bornes de connexion de batterie externes pour plus de choix.

Trois bornes (positive, neutre, négative) sont ramenées du groupe de batteries et connectées au système ASI. La ligne neutre est tirée du milieu des batteries en série (voir Figure 2-5)

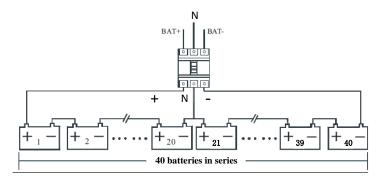


Figure 2-5 Schéma de connexion de la batterie

Danger

La tension aux bornes de la batterie est supérieure à 400 Vc.c., veuillez suivre les instructions de sécurité pour éviter tout risque de choc électrique.

Assurez-vous que les électrodes positive, négative et neutre sont correctement connectées aux bornes de l'unité de batterie au disjoncteur et du disjoncteur au systèmeASI.

2.5 Entrée de câble

L'entrée des câbles se trouve en bas de l'arrière.

L'entrée de câble est illustrée à la figure 2-6.

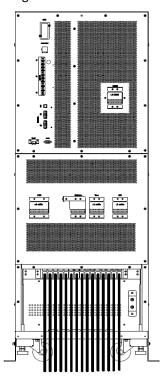


Figure 2-6 Entrée des câbles

2.6 Câbles d'alimentation

2.6.1 Spécifications

Les dimensions recommandées pour les câbles d'alimentation sont indiquées dans le tableau 2-2.

Tableau 2-2 Tailles recommandées pour les câbles d'alimentation

	Table des matières		10kVA	15kVA	20kVA	30kVA	40kVA
	Courant d'entrée principal (A)		18	28	35	55	70
Entrée principale	Section de câble (mm²)	Phases N	6	6	10	10	16
	Courant de so	rtie (A)	15	23	30	45	60
Sortie	Section de câble (mm²)	Phases N	6	6	10	10	16
	Courant d'entrée de dérivation (A)		15 / 23	23	30	45	60
Entrée de dérivation (En option)	Section de câble (mm²)	Phases N	6	6	10	10	16
Entrée de la	Courant d'entrée de	la batterie (A)	20	30	40	60	80
batterie	Section de câble (mm²)	+/-/N	6 / 10	6 / 10	16	16	25
PE	Section de câble (mm²)	PE	6 / 10	6/10	10	10	16

Note:

La section de câble recommandée pour les câbles d'alimentation est uniquement pour les situations décrites ci-dessous :

- Température ambiante : < 30°C.
- La perte en CA est inférieure à 3 %, la perte de courant continu est inférieure à 1 %, la longueur des câbles d'alimentation en courant alternatif ne doit pas être supérieure à 50 mètres et la longueur des câbles d'alimentation en CC ne doit pas être supérieure à 30 mètres.
- Les courants listés dans le tableau sont basés sur le système à 380 V (tension ligne à ligne).
 Pour le système à 400 V, le courant est 0,95 fois et pour le système 415 V, le courant est 0,92 fois.
- La taille des lignes neutres doit être de 1,5 à 1,7 fois la valeur indiquée ci-dessus lorsque la charge prédominante est la non linéaire.

2.6.2 Spécifications pour le terminal de câbles d'alimentation

Les caractéristiques pour le connecteur des câbles d'alimentation figurent dans le tableau 2-3.

Tableau 2-3 Exigences pour les bornes d'alimentation

Port	Raccordement	Boulon	Ouverture Raccordement	Moment de couple
Entrée secteur				
Entrée de		10 + 15kVA = M5	10 + 15kVA =10,4mm	
dérivation	Câbles sertis			
Entrée de la	Borne OT	20 + 30kVA = M6	20 + 30kVA =13mm	4,9 Nm
batterie	Borne or			
Sortie		40kVA = M8	40kVA = 23mm	
PE				

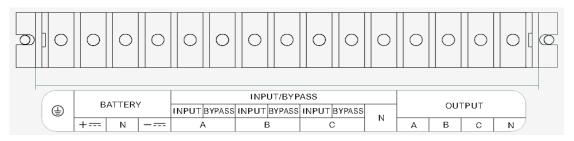
2.6.3 Disjoncteur

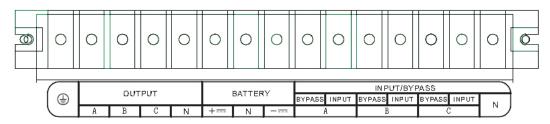
Les disjoncteurs externes (CB) recommandés pour le système sont dans le tableau 2-4.

Tableau 2-4 CE recommandés

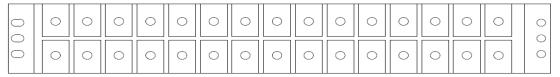
Position installée	10 kVA	15 kVA	20 kVA	30 kVA	40kVA
Entrée CB				80A/3P	
Dérivation CB	32A/3P	40A/3P	63A/3P		100A/3P
Sortie CB	32A/3P	40A/3P	USA/SP	63A/3P	100A/3P
Maintenance CB					
Batterie CB	32A/3P	40A, 250Vcc	63A, 250Vcc	100A 250Vcc	125A, 250Vcc

Attention


Le CB avec RCD (Dispositif de courant résiduel) n'est pas suggéré pour le système.


2.6.4 Connexion des câbles d'alimentation

Les étapes de connexion des câbles d'alimentation sont les suivantes :


- Assurez-vous que tous les commutateurs de distribution d'entrée externes des l'ASI sont complètement ouverts et que le commutateur de dérivation de maintenance interne de l'ASI et le commutateur de batterie interne sont ouverts. Fixez les panneaux d'avertissement appropriés à ces commutateurs pour empêcher tout fonctionnement non autorisé.
- 2. Les bornes de connexion sont à l'arrière de l'ASI, retirez le couvercle de protection métallique, les bornes sont illustrées dans la figure 2-7

(a) Bornes de connexion pour modèles 10 kVA et 15 kVA

(b) Bornes de connexion pour modèles 20 kVA

QUITDUT				D4775DV			INPUT/BYPASS					
OUTPUT			BATTERY		INPUT	BYPASS	INPUT	BYPASS	INPUT	BYPASS	N	
A B C N		+===	N		ı	A	E	3		C		

(c) Bornes de connexion pour 30 kVA et 40 kVA

Figure 2-7 Bornes de connexion de câble (le nom de phase A-B-C est équivalent à L1- L2-L3 ou R-S-T)

- 3. Branchez le fil de terre de protection à la borne de terre de protection (PE).
- 4. Connectez les câbles d'alimentation d'entrée CA à la borne d'entrée principale et les câbles de sortie CA à la borne de sortie.
- 5. Branchez les câbles externes de la batterie à la borne de la batterie.
- 6. Vérifiez qu'il n'y a pas d'erreur et réinstallez tous les couvercles de protection.

Attention

Les opérations décrites dans cette section doivent être effectuées par des électriciens autorisés ou du personnel technique qualifié. Si vous avez des difficultés, contactez le fabricant ou l'agence.

Attention

Après la connexion, restaurez le bouclier de protection en plastique avant d'alimenter l'ASI, les mesures électriques pour assurer la sécurité de l'activation.

Avertissement

- Serrez les bornes de connexion à un couple suffisant, reportez-vous au tableau 2-3 et assurezvous que la rotation de phase est correcte.
- Avant la connexion, assurez-vous que l'interrupteur d'entrée et l'alimentation sont éteints. Fixez une étiquette d'avertissement pour avertir les autres de ne pas fonctionner.
- Le câble de mise à la terre et le câble neutre doivent être connectés conformément aux codes locaux et nationaux.
- Lorsque les trous de câble ne présentent pas de câbles, veuillez les boucher par le bouchon.

2.7 Câbles de commande et de communication

L'ASI est configuré avec les interfaces RS232, RS485 et le contact sec. USB et la carte SNMP sont optionnels, comme le montre la figure 2-8.

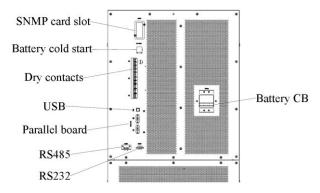


Figure 2-8 Contact sec et interface de communication

2.7.1 Interface de contact à sec

L'ASI est équipé de ports avec des contacts propres allant de J2 à J10, répartis en trois catégories : contacts de mesure (J2 et J3), contacts d'entrée (J4, J5, J6-2 et J7) et contacts de sortie (J6-1, J8, J9 et J10). Les contacts propres d'entrée permettent d'exécuter certains commandes, tandis que les contacts propres de sortie fournissent des signalisations. Tous les contacts d'entrée et de sortie peuvent être programmés pour différentes fonctionnalités.

Les définitions par défaut de ces ports sont présentées dans le tableau 2-5.

Tableau 2-5 Fonctions par défaut des ports

Port	Prénom	Fonction
J2-1	TEMP_BAT	Mesure de la température de la batterie
J2-2	TEMP_COM	Mesure de la température de la batterie
J3-1	ENV_TEMP	Mesure de la température ambiante
J3-2	TEMP_COM	Mesure de la température ambiante
J4-1	REMOTE_EPO_NC	Contact EPO normalement fermé (fermé entre J4-1 et J4-2)
J4-2	+24V_DRY	Alimentation interne à +24V
J4-3	+24V_DRY	Alimentation interne à +24V
J4-4	REMOTE_EPO_NO	Contact EPO normalement ouvert (ouvert entre J4-3 et J4-4)
J5-1	+24V_DRY	Alimentation interne à +24V
J5-2	GEN_CONNECTED	Contact groupe électrogène normalement ouvert
J5-3	GND_DRY	Ne pas utiliser. Commun de l'alimentation à +24V
J6-1	Unità BCB	Sortie +24V / 20 mA pour alimenter une bobine externe d'un
10-1		MCB (ou MCCB)
J6-2	BCB_Status	Entrée identifiant l'état « déclenché » sur MCB (ou MCCB)
J7-1	GND_DRY	Point commun alimentation interne +24V
J7-2	BCB_Online	Entrée identifiant l'état « ouvert/fermé » sur MCB (ou MCCB)
J8-1	BAT_LOW_ALARM_NC	Contact batterie faible (déchargée) ; contact normalement
JO-1		fermé
J8-2	BAT_LOW_ALARM_NO	Contact batterie faible (déchargée) ; contact normalement
30 2		ouvert
J8-3	BAT_LOW_ALARM_CO	Commun pour J8-1 et J8-2
30 0	MM	
J9-1	GENERAL_ALARM_NC	Contact pour défaillance de l'ASI ; contact normalement
		fermé
J9-2	GENERAL_ALARM_NO	Contact pour défaillance de l'ASI ; contact normalement
J9-2		ouvert
10.0	GENERAL ALARM CO	Commun pour J9-1 et J9-2
J9-3	MM	
	UTILITY_FAIL_NC	Contact pour défaillance de l'ASI ; contact normalement
J10-1		fermé
	UTILITY_FAIL_NO	Contact pour défaillance de l'ASI ; contact normalement
J10-2		ouvert
J10-3	UTILITY_FAIL_COMM	Borne commune pour J10-1 et J10-2

Remarque : Les ports d'entrée avec contact propre J5-2, J6-2 et J7 peuvent être programmés via notre logiciel MTR. Les événements programmables sont indiqués dans le Tableau 2-6.

30

Tableau 2-6 Événements programmables d'entrée

NO.	Événement	Descriptif
1	Entrée générateur	L'entrée est alimentée par le générateur
2	CB principal fermé	L'interrupteur d'entrée principal est fermé
3	Silence	Mode silencieux activé
4	État BCB	État BCB, ouvert ou fermé
5	Transfert à l'onduleur	L'ASI passe en mode onduleur
6	BCB en ligne	Active le contrôle de l'état du BCB
7	Transfert au bypass	L'ASI passe en mode bypass
8	Réinitialisation défaut	Réinitialise les défauts ou alarmes
9	Batterie surcharge	Les batteries sont en surcharge
10	Batterie en décharge	Les batteries sont en décharge
11	Arrêt charge rapide	Arrête la charge rapide

Remarque: Les ports de sortie avec contact propre J6-1, J8, J9 et J10 peuvent être programmés via notre logiciel MTR. Les événements programmables sont indiqués dans le Tableau 2-7.

Tableau 2-7 Événements programmables de sortie

NO.	Événement	Descriptif
1	Déclenchement BCB	Déclenchement BCB
2	Déclenchement Bypass Backfeed	Déclenchement de la protection contre le Backfeed en bypass
3	Surcharge	Sortie en surcharge
4	Alarme générale	Alarmes générales
5	Sortie perdue	Absence de tension de sortie
6	Mode batterie	L'ASI fonctionne en mode batterie
7	Défaut réseau	La source électrique principale est défaillante
8	Onduleur actif	L'ASI fonctionne en mode onduleur
9	Chargeur actif	Les batteries sont en charge
10	Mode normal	L'ASI fonctionne en mode normal
11	Batterie faible	Tension batterie faible
12	Bypass actif	L'ASI fonctionne en mode bypass
13	Batterie en décharge	Les batteries sont en décharge
14	Redresseur prêt	Le redresseur est en démarrage
15	Charge rapide batterie	Les batteries sont en charge rapide

Remarque: Les fonctions d'entrée et de sortie standard sont expliquées ci-dessous.

MESURES

Interface de détection des températures de batterie et ambiante

Les ports J2 et J3 permettent respectivement de détecter la température des batteries et celle de l'environnement. Température de la batterie utilisée pour compenser la tension de charge de la batterie. Une tension spécifique peut être configurée pour chaque variation de °C (par défaut : -3 mV/°C).

Température ambiante : utilisée pour surveiller les températures locales.

Le diagramme des interfaces pour J2 et J3 est illustré à la figure 2-22, la description de l'interface se trouve dans le tableau 2-8.

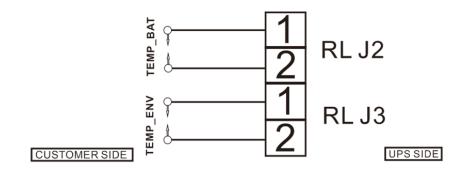


Figure 2-22 J2 et J3 pour la détection de température

Tableau 2-8

Port	Prénom	Fonction
J2-1	TEMP_BAT	Détection de la température de la batterie
J2-2	TEMP_COM	Terminal commun pour température batterie
J3-1	ENV_TEMP	Détection de la température ambiante
J3-2	TEMP_COM	Terminal commun pour température ambiante

Note:

Un capteur de température spécifié est requis pour la détection de la température, et est optionnel, veuillez confirmer avec le fabricant ou l'agence locale avant la commande.

CONTACTS D'ENTRÉE

Contacts de commande EPO à distance

Port J4 : utilisé pour l'entrée EPO à distance.

Il y a deux possibilités : connexion au contact normalement fermé (J4 1-2) ou au contact normalement ouvert (J4 3-4).

En fonctionnement normal, ces contacts restent dans leurs positions respectives. Lorsque l'EPO a été activé, le contact (J4 1-2) passe en position ouverte et le contact EPO (J4 3-4) passe en position fermée.

Le diagramme des ports est illustré à la figure 2-23, et la description des ports est illustrée au tableau 2-9.

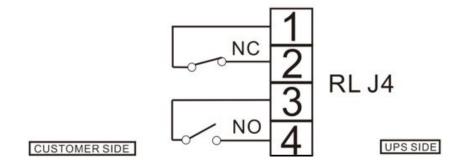


Figure 2-23 Schéma du port d'entrée pour l'OEB distant

Tableau 2-9

Port	Prénom	Fonction
J4-1	REMOTE_EPO_NC	Activation EPO quand le contact devient "ouvert"
J4-2	+24V_DRY	+24V
J4-3	+24V_DRY	+24V
J4-4	REMOTE_EPO_NO	Activation EPO quand le contact devient "fermé"

Remarque

J4-1 et J4-2 doivent être connectés en fonctionnement normal.

J4-2 et J4-3 sont alimentés en +24 V par l'alimentation interne.

Contact pour groupe électrogène

Port J5: utilisé pour détecter l'état du groupe électrogène. Le contact J5 1-2 est normalement ouvert lorsque le groupe n'est pas actif. Lors de l'activation, il se ferme, indiquant que le groupe alimente l'ASI.

Le diagramme des ports est illustré à la figure 2-24, la description des ports est illustrée au tableau 2-10.

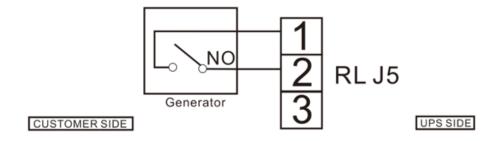


Figure 2-24 Diagramme du port d'entrée pour l'entrée du générateur

Tableau 2-10

Port	Prénom	Fonction
J5-1	+24V_DRY	Alimentation interne +24V
J5-2	GEN_CONNECTED	État de connexion du générateur
J5-3	GND_DRY	Ne pas utiliser (commun +24V interne)

Contacts du disjoncteur de batterie (BCB)

Les fonctions par défaut de J6 et J7 sont les ports pour le déclenchement du BCB et l'état ouvert/fermé du BCB.

Déclenchement du BCB: la connexion de la bobine de déclenchement du BCB (ports J6-1 et J7-1) fournit un signal de 24V et 20 mA pour déclencher, via une bobine à impulsion de courant, le disjoncteur de protection de la batterie externe. Cette commande est activée lorsque l'ordre EPO est déclenché et/ou en cas de EOD (fin de décharge).

Contact de l'état "Déclenché" du BCB : connectez le contact auxiliaire "Déclenché" du BCB (contact normalement ouvert) entre les bornes J6-2 et J7-1. Le contact devient normalement fermé lorsque le BCB est déclenché.

N.B.: pour utiliser cette fonction, il est obligatoire de court-circuiter J7-1 avec J7-2.

Contact de l'état "Position" du BCB : connectez le contact auxiliaire "Position" du BCB (contact normalement ouvert) entre les bornes J7-1 et J7-2. Le contact devient normalement fermé lorsque l'état de position du BCB change.

Le diagramme des ports est illustré à la figure 2-25, et la description est illustrée au tableau 2-11.

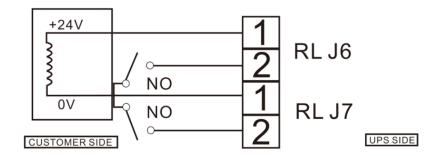


Figure 2-25 Port BCB

Tableau 2-11

Port	Prénom	Fonction
J6-1	BCB_DRIV	Fournit un signal de commande de " +24V et 20mA"
J6-2	BCB_Status	État du contact "déclenché" du BCB, à connecter au signal normalement ouvert du BCB.
J7-1	GND_DRY	Mise à la terre pour +24V.
J7-2	BCB_ON	État du contact "position" du BCB, à connecter au signal normalement ouvert du BCB.

Remarque : le MCB (ou MCCB) peut également être utilisé comme entrée (exemple : protection contre les retours de flamme).

Contacts de Sortie

Contact Batterie Faible

C'est un contact inverseur avec une position entre J8 1-3 (Normalement fermé) et J8 2-3 (Normalement ouvert). Il sert à avertir lorsque la tension de la batterie, pendant la phase de décharge, atteint un niveau inférieur à une valeur prédéfinie.

Lors de l'activation de l'alarme, le contact J8 1-3 devient NO et le contact J8 2-3 devient NC.

Le diagramme des ports est illustré à la figure 2-26, et la description est illustrée au tableau 2-12.

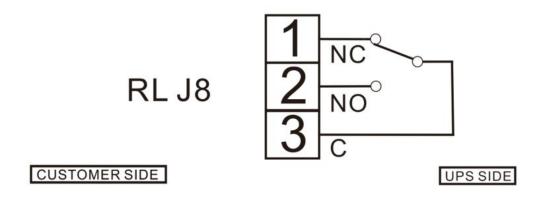


Figure 2-26 Schéma de l'interface de contact sec de sortie d'avertissement de batterie

Tableau 2-12

Port	Prénom	Fonction
J8-1	BAT_LOW_ALARM_NC	Contact batterie faible NC (normalement fermé) sera ouvert pendant l'alarme.
J8-2	BAT_LOW_ALARM_NO	Contact batterie faible NO (normalement ouvert) sera fermé pendant l'alarme.
J8-3	BAT_LOW_ALARM_COMM	Borne commune

Contact pour alarme générale

C'est un contact inverseur avec une position entre J9 1-3 (Normalement fermé) et J9 2-3 (Normalement ouvert). Il sert à fournir un contact sec en présence d'une Alarme Générique.Lors de l'activation de l'alarme, le contact J9 1-3 devient NO et le contact J9 2-3 devient NC.

Le diagramme des ports est illustré à la figure 2-27, et la description est illustrée au tableau 2-13.

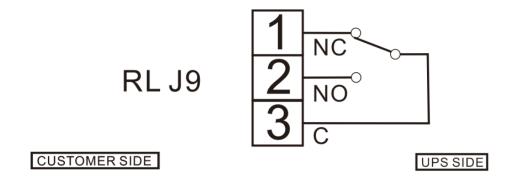


Figure 2-27 Schéma général de l'interface alarme contact sec

Tableau 2-13

Port	Prénom	Fonction	
J9-1	CENEDAL ALADMA NO	Le relais d'avertissement intégré NC (normalement	
	GENERAL_ALARM_NC	fermé) sera ouvert pendant l'alarme.	
J9-2 G	CENEDAL ALADAA NO	Le relais d'avertissement intégré NO (normalement	
	GENERAL_ALARM_NO		
J9-3	GENERAL_ALARM_COMM	Borne commune	

Interface de contact pour défaut de l'ASI

C'est un contact inverseur avec une position entre J10 1-3 (Normalement fermé) et J10 2-3 (Normalement ouvert). Il sert à fournir un contact sec en cas de défaut de l'onduleur (ASI). Lors de l'activation de l'alarme, le contact J10 1-3 devient NO et le contact J10 2-3 devient NC.

Le schéma d'interface est illustré à la figure 2-28, et la description est illustrée au tableau 2-13.

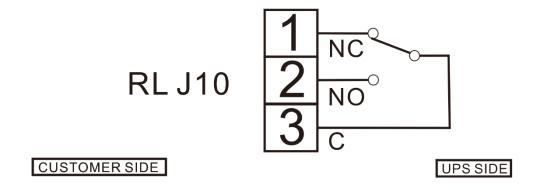


Tableau 2-13

Port	Prénom	Fonction			
110.1	LITHITY FAIL NC	Le relais d'alerte de panne de secteur NC			
J10-1	UTILITY_FAIL_NC	(normalement fermé) sera ouvert pendant l'alarme.			
110.2	LITUITY FAIL NO	Le relais d'alerte de panne secteur NO (normalemen			
J10-2	UTILITY_FAIL_NO	ouvert) sera fermé pendant l'alarme.			
J10-3	UTILITY_FAIL_COMM	Borne commune			

2.7.2 Interface de communication

Les ports RS232, RS485 et USB peuvent fournir des données utilisables pour la mise en service et la maintenance par des techniciens autorisés ou pour la mise en réseau ou le système de surveillance intégré dans la salle de service.

SNMP est utilisé sur site pour la communication (en option).

3. Panneau de commande et d'affichage LCD

3.1 Introduction

Ce chapitre présente en détail les fonctions et les instructions de l'opérateur du panneau de commande et d'affichage de l'opérateur, et donne des informations d'affichage LCD, des informations de menu détaillées, des informations de fenêtre d'invite et des informations d'alarme l'ASI.

3.2 Écran LCD

Après le démarrage du système de surveillance, le système accède à la page d'accueil, par la fenêtre d'accueil. La page d'accueil est illustrée à la figure 3-1.

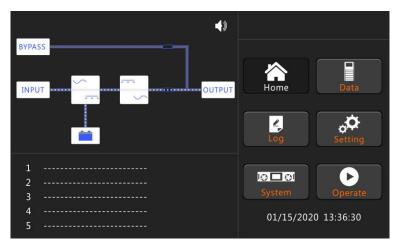


Fig.3-1 Page d'accueil

La page d'accueil comprend la barre d'état, les informations d'alerte et le menu principal.

Barre d'état

La barre d'état contient le modèle du produit, la capacité, le mode de fonctionnement et l'heure du système.

• Informations d'alerte

Affiche les informations d'avertissement de l'armoire.

• Menu principal

Le menu principal comprend l'armoire, les données, le réglage, le journal, le fonctionnement et le système. En tant qu'utilisateur, vous pouvez faire fonctionner et contrôler l'ASI, et parcourir tous les paramètres mesurés via le menu principal.

3.3 Menu principal

3.3.1 Données

Appuyez sur l'icône « Donnée s» pour que le système accède à la page des données, comme le montre la figure 3-2.

Figure 3-2 Interface de sous-menu de la page de données

3.3.2 Journal

Appuyez sur l'icône « Journal », et le système accède à l'interface du journal, comme le montre la figure 3-3. Le journal est répertorié dans l'ordre chronologique inverse (c'est-à-dire que le premier à l'écran avec #1 est le plus récent), qui affiche les événements, les avertissements et les informations sur les défauts ainsi que les données et l'heure à laquelle ils se produisent et disparaissent.

Figure 3-3 Page du journal

Le tableau 3-1 suivant montre les événements possibles du journal historique de l'ASI.

Non	Affichage LCD	Explication	
1	Charger sur l'ASI-activation	Charger sur l'ASI	
2	Charger sur la dérivation- activation	Charger sur la dérivation	
3	Pas de définition de charge	Pas de charge (puissance de sortie perdue)	
4	Suralimentation de la batterie- activation	Le chargeur augmente la tension de la batterie	
5	Batterie flottante-activation	Le chargeur est une tension de batterie flottante	
6	Décharge de batterie-activation	La batterie se décharge	
7	Batterie connectée-activation	La batterie est connectée	
8	Batterie non connectée-Définition	La batterie est déconnectée.	
9	Cb de maintenance fermée- activation	La CB de maintenance est fermée	
10	CB de maintenance ouverte- activation	La CB de maintenance est ouverte	
11	EPO-activation	Mise hors tension d'urgence	
12	Module sur moins-activation	La capacité de l'ASI est inférieure à la capacité de charge	
13	Module sur moins-effacer	L'alarme disparaît	
14	Générateur-Entrée-activation	Générateur comme source d'entrée CA	
15	Entrée du générateur-effacer	L'alarme disparaît	
16	Utilitaire anormal-activation	Utilitaire (grille) anormal	
17	Utilité anormale - effacer	L'alarme disparaît	
18	Erreur de séquence de dérivation- Définition	La séquence de tension de dérivation est inversée	
19	Erreur de séquence de dérivation- effacer	L'alarme disparaît	
20	Tension de dérivation anormale- activation	Tension de dérivation anormale	
21	Tension de dérivation anormale- effacer	L'alarme disparaît	
22	Défaillance module de dérivation- activation	Défaillance de dérivation	
23	Défaillance du module de dérivation-désactivation	L'alarme disparaît	

	Construction 17.1.11		
24	Surcharge de dérivation- activation	Surcharge de dérivation	
25	Surcharge de dérivation-effacer	L'alarme disparaît	
26	Temporisation surcharge de dérivation-activation	Temporisation de surcharge de dérivation	
27	Temporisation de surcharge de dérivation-effacer	L'alarme disparaît	
28	Fréq dér hors tol-activation	Fréquence de dérivation hors tolérance	
29	Fréq dér hors tol-effacer	L'alarme disparaît	
30	Dépasser Tx Lim temps-activation	Les temps de transfert (de l'ASI à la dérivation) en 1 heure dépassent la limite.	
31	Dépasser Tx Lim temps-effacer	L'alarme disparaît	
32	Court-circuit de sortie définition	Circuit de court-circuit de sortie	
33	Court-circuit de sortie-effacer	L'alarme disparaît	
34	Batterie EOD-activation	Fin de décharge de la batterie	
35	Batterie EOD-effacer	L'alarme disparaît	
36	Test de batterie-activation	Démarrage du test de la batterie	
37	Test de la batterie OK-activation	Test de la batterie OK	
38	Défaillance du test de la batterie - définition	Défaillance du test de la batterie	
39	Maintenance de la batterie- activation	Début du test de maintenance de la batterie	
40	Maintenance de la batterie OK- activation	Test de maintenance de la batterie OK	
41	Défaillance maintenance de batterie-activation	Défaillance du test de maintenance de la batterie	
44	Défaillance du redresseur- activation	Défaillance du redresseur	
45	Défaillance du redresseur - effacer	L'alarme disparaît	
46	Défaillance de l'ASI-activation	Défaillance de l'ASI	
47	Défaillance de l'ASI - Effacement	L'alarme disparaît	
48	Surchauffe redresseur - définition	Surchauffe du redresseur	
49	Surchauffe du redresseur - effacer	L'alarme disparaît	
50	Défaillance du ventilateur- activation	Défaillance du ventilateur	
51	Défaillance du ventilateur - Effacement	L'alarme disparaît	
52	Surcharge de sortie-activation	Surcharge de sortie	
53	Surcharge de sortie-effacer	L'alarme disparaît	
54	Temporisation surcharge de l'ASI	Temporisation de surcharge de l'ASI	
55	Surcharge TEMP ASI-effacer	L'alarme disparaît	
56	Surchauffe de l'ASI-activation	Surchauffe de l'ASI	
57	Surchauffe de l'ASI-effacer	L'alarme disparaît	
58	Inhibé sur ASI-activation	Empêche le transfert du système de dérivation à l'ASI	
59	Inhibé sur ASI-effacer	L'alarme disparaît	

60	Dér. transfert manuel-activation	Transfert manuel vers la dérivation		
61	Dér. transfert manuel-activation	Annule pour dérivation manuelle		
01	Echap dérivation manuelle-	Échappe le transfert à la commande de dérivation		
62	activation	manuelle		
63	Basse tension batterie-activation	Basse tension de la batterie		
64	Basse tension batterie-effacer	L'alarme disparaît		
65	Inverser la batterie-activation	Pôle de la batterie (positif et négatif sont inversés)		
66	Inverser la batterie -effacer	L'alarme disparaît		
67	Protection de l'ASI-activation	Protection de l'ASI (tension de l'ASI anormale ou retour d'alimentation vers le bus CC)		
68	Protection de l'ASI -effacer	L'alarme disparaît		
69	Perte neutre d'entrée-activation	Perte du neutre de la grille d'entrée		
70	Défaillance du ventilateur de dérivation-activation	Défaillance du ventilateur de dérivation		
71	Défaillance du ventilateur de dérivation-désactivation	L'alarme disparaît		
72	Arrêt manuel-activation	Arrêt manuel		
73	Charge de suralimentation manuelle-activation	Charge de suralimentation manuelle de la batterie		
74	Charge manuelle flotteur- activation	Charge manuelle du flotteur de la batterie		
75	ASI verrouillé -activation	ASI verrouillé		
76	Erreur de câble parallèle- activation	Câble parallèle en erreur		
77	Erreur de câble parallèle -Effacer	L'alarme disparaît		
78	Perdu N+X redondant	Perdu N+X redondant		
79	N+X Redondant Perdu-effacer	L'alarme disparaît		
80	EOD sys inhibé	L'alimentation du système est inhibée après que la batterie est en mode EOD (fin de la décharge)		
81	Défaillance du partage de puissance-activation	Le partage de puissance n'est pas en équilibre		
82	Défaillance de partage de	L'alarme disparaît		
83	Défaillance de la détection de la tension d'entrée-activation	La tension d'entrée est anormale		
84	Défaillance de la détection de la tension d'entrée-Effacement	L'alarme disparaît		
85	Défaillance de la détection de la tension de la batterie-activation	La tension de la batterie est anormale		
86	Défaillance de détection de tension de batterie -effacer	L'alarme disparaît		
87	Défaillance de la tension de sortie- activation	La tension de sortie est anormale		
88	Défaillance de la tension de sortie- désactivation	L'alarme disparaît		
89	Température de sortie en erreur - activation	Température de sortie anormale		

90	Température de sortie en erreur - effacer	L'alarme disparaît		
91	Déséquilibre du courant d'entrée- activation	Le courant d'entrée n'est pas équilibré		
92	Déséquilibre du courant d'entrée- effacer	L'alarme disparaît		
93	Surtension du bus CC-activation	Surtension du bus CC		
94	Surtension du bus CC- désactivation	L'alarme disparaît		
95	Défaillance démarrage progressif REC -activation	Défaillance du démarrage en douceur du redresseur		
96	Défaillance démarrage progressif REC -désactivation	L'alarme disparaît		
97	Défaillance de la connexion du relais-activation	Relais en circuit ouvert		
98	Défaillance de connexion de relais -désactivation	L'alarme disparaît		
99	Court-circuit de relais-activation	Relais court-circuité		
100	Court-circuit de relais - désactivation	L'alarme disparaît		
101	Pas de température d'entrée Capteur-activation	Le capteur de température d'entrée n'est pas connecté ou anormal		
102	Pas de capteur de température d'entrée -effacer	L'alarme disparaît		
103	Aucune température de sortie Capteur-activation	Le capteur de température de sortie n'est pas connecté ou anormal		
104	Pas de capteur de température de sortie-Effacer	L'alarme disparaît		
105	Surchauffe de l'entrée -activation	Surchauffe de l'entrée		
106	Surchauffe de l'entrée - désactivation	L'alarme disparaît		

3.3.3 Paramétrage

Appuyez sur l'icône « Paramétrage », le système accède à la page de Paramétrage comme le montre la Figure 3-4.

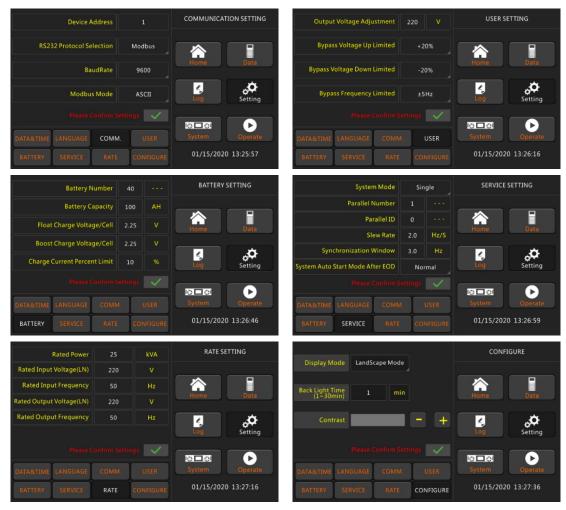


Figure 3-4 Interface de sous-menu de la page de paramétrage

Les sous-menus sont répertoriés en bas de la page Paramètres. En tant qu'utilisateur vous pouvez accéder à chacune des interfaces de paramétrage en appuyant sur l'icône correspondante. Les sous-menus sont décrits en détail ci-dessous dans le tableau 3-2.

Tableau 3-2 Description de chaque sous-menu de paramétrage

Nom du sous- menu	Table des matières	Signification			
Data at have	Réglage du format de	Trois formats: (a) année/mois/jour;			
Date et heure	date	(b) mois/date/année; (c) date/mois/année			
	Réglage de l'heure	Temps de réglage			
	Langue actuelle	Langue d'utilisation			
Langue	Sélection de la langue	Le paramètre prend effet immédiatement après			
	Selection de la langue	avoir touché l'icône de langue			
COMM.	Adresse du dispositif	Paramétrage de l'adresse de communication			

	Sélection du protocole	Protocole SNT, Protocole Modbus, Protocole YD/T		
	RS232	et Dwin (pour utilisation en usine uniquement)		
	Débit en bauds	Paramétrage du débit en bauds		
	Mode Modbus	Mode de paramétrage modbus : ASCII ou RTU		
	Réglage de la tension de sortie	Paramétrage de la tension de sortie		
	Tension de dérivation sup limitée	Limite supérieure de la tension d'alimentation pour la dérivation Paramétrable: +10 %,+15 %,+20 %,+25 %		
UTILISATEUR	Tension de dérivation inf limitée	Limite inférieure de la tension d'alimentation pour la dérivation Paramétrable: -10 % -15 % -20 % -30 % -40 %		
	Fréquence de dérivation limitée	Fréquence de fonctionnement autorisée pour la dérivation Paramétrable +/-1 Hz,+/-3 Hz,+/-5 Hz		
	Numéro de la batterie	Paramétrage du nombre de batteries de 12 V		
	Capacité de la batterie	Paramétrage de la capacité de la batterie en Ah		
BATTERIE	Tension de charge flottante/Cellule	Paramétrage de la tension de charge flottante		
	Tension de charge de suralimentation/cellule	Paramétrage de la tension de charge de suralimentation		
	Limite de pourcentage de courant de charge	Courant de charge (% de la puissance nominale)		
	Mode Système	Paramétrage du mode système : Simple, parallèle, ECO simple, ECO parallèle, LBS, LBS PARALLÈLE		
	Numéro parallèle	Numéro de l'ASI du système parallèle		
	ID parallèle	ID de l'ASI dans un système parallèle		
SERVICE	Vitesse de balayage	Fréquence de dérivation de la vitesse de balayage		
SERVICE	Fenêtre de synchronisation	Fenêtre de synchronisation de fréquence de dérivation		
	Mode de démarrage automatique du système après EOD	Mode de démarrage de l'ASI après EOD de la batterie (fin de la décharge)		
TARIF	Configuration du paramètre nominal	Usage en usine uniquement		
	Mode d'affichage	Prise en charge de l'écran LCD tour et rack (sur la tour Nova l'ASI uniquement)		
CONFIGURER	Temps de rétroéclairage	Temps de rétroéclairage LCD		
	Contraste	Contraste LCD		

3.3.4 Système

La fenêtre d'informations sur le système affiche la version du logiciel, la tension du bus, la tension du chargeur, etc. Ces menus « État et alarme », « Code REC » et « Code INV » sont utiles pour maintenir l'ASI, comme le montre la figure 3-5 suivante.

Figure 3-5 Interface de sous-menu de la page système

3.3.5 Exploitation

Appuyez sur l'icône «Exploitation», le système entre dans la page «Exploitation», comme le montre la figure 3-6.

Figure 3-6 Page d'utilisation

Le menu « Utilisation » comprend le BOUTON DE FONCTION et la COMMANDE DE TEST. Le contenu est décrit en détail ci-dessous.

BOUTON DE FONCTION

- On/Off
 Marche/arrêt ON/OFF manuelle de l'ASI
- Suppression des défauts Supprime les défauts.
- Transfert en mode Bypass /Esc Bypass, Transfert en mode dérivation / Esc depuis mode dérivation.
- Transfert vers ASI Transférez le mode dérivation en mode ASI.
- Réinitialiser les données d'historique de la batterie Réinitialisez les données d'historique de la batterie en appuyant sur l'icône, les données d'historique comprennent les heures de décharge, les jours de fonctionnement et les heures de décharge.

COMMANDE DE TEST

- Test de la batterie Le système passe en mode Batterie pour tester l'état de la batterie, ce qui nécessite la normalité de la dérivation et la capacité de la batterie n'est pas inférieure à 25 %.
- Entretien de la batterie Le système passe en mode Batterie. Cette fonction est utilisée pour maintenir la batterie, ce qui nécessite la normalité de la dérivation et une capacité de batterie minimale de 25 %.
- Suralimentation batterie
 Charge flottante batterie
 Le système démarre la suralimentation.
 Le système démarre la charge flottante...
- **Test d'arrêt** Le système arrête le test de la batterie ou la maintenance de la batterie.

4. Opérations

4.1 Démarrage de l'ASI

4.1.1 Démarrage en mode normal

L'ASI doit être démarré par le technicien de mise en service après l'achèvement de l'installation. Les étapes ci-dessous doivent être suivies :

- 1. Assurez-vous que tous les disjoncteurs sont ouverts.
- 2. Fermez le disjoncteur de sortie (CB), puis l'entrée CB et le Bypass CB, le système commence l'initialisation.
- 3. L'écran LCD devant l'ASI est allumé. Le système accède à la page d'accueil, comme le montre la Fig. 4-1.
- 4. L'interface d'accueil de l'écran LCD montre que le redresseur du système fonctionne, l'indicateur clignote, comme le montre la figure 4.1.

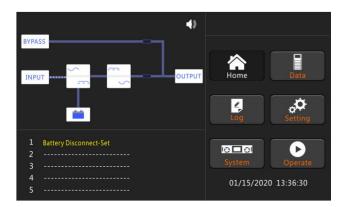


Fig.4-1 LCD du démarrage du redresseur

5. Après environ 30 S, le démarrage du redresseur est terminé, le commutateur statique de dérivation est activé et l'indicateur de dérivation clignote, comme le montre la figure 4-2

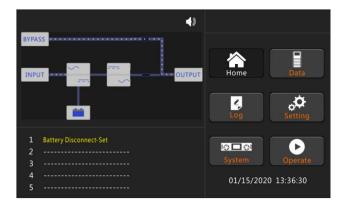


Fig.4-2 LCD du démarrage de la dérivation

6. Une fois l'interrupteur statique de dérivation activé, l'ASI démarre et la barre d'indication de l'ASI clignote, comme illustré à la figure 4-3.

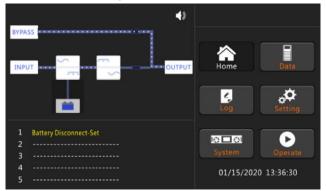


Fig.4-3 LCD de démarrage de l'ASI

7. Après environ 30 S, lorsque l'ASI fonctionne normalement, l'ASI passe de la dérivation à l'ASI, la barre d'indication de dérivation est éteinte, la barre d'indication de charge clignote, comme le montre la figure 4-4.

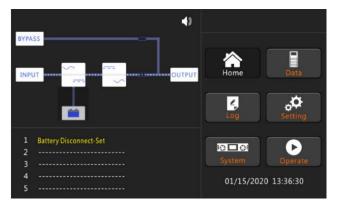


Fig.4-4 LCD du mode ASI

8. Fermez l'interrupteur de batterie externe, l'indicateur de batterie clignote, puis l'ASI charge la batterie. L'ASI fonctionne en mode normal, comme le montre la figure 4-5

Fig.4-5 LCD du mode normal

Remarque Les utilisateurs peuvent parcourir les alarmes pendant le processus de démarrage en consultant le menu Journal.

4.1.2 Démarrer à partir de la batterie

Le démarrage à partir de la batterie fait référence au démarrage à froid de la batterie. Les étapes pour le démarrage sont les suivantes :

- 1. Vérifiez que la batterie est correctement connectée; fermez les disjoncteurs de la batterie.
- 2. Appuyez sur le bouton rouge pour le démarrage à froid de la batterie, voir Fig.4-6.

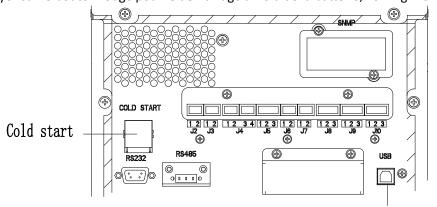


Fig.4-6 position du bouton de démarrage à froid de la batterie

- 3. Après cela, le système démarre en suivant les étapes 3 de la section 4.1.1 et le système passe en mode batterie dans les 30 S..
- 4. Fermez le commutateur d'isolement de sortie et le commutateur d'isolement de sortie externe pour alimenter la charge, et le système fonctionne en mode batterie

4.2 Procédure de commutation entre les modes de fonctionnement

4.2.1 Passage de l'ASI en mode batterie à partir du mode normal

L'ASI passe au mode batterie immédiatement après la déconnexion du disjoncteur d'entrée de l'utilitaire (service public). Avertissement si la batterie n'est pas OK, il y a un risque de relâchement/arrêt de la charge, pour tester la commande de test de batterie d'utilisation de la batterie

4.2.2 Passage de l'ASI du mode normal en mode dérivation

Suivez le chemin en sélectionnant l'icône « Utilisation »,

Avertissement

Assurez-vous que la dérivation est normale avant de passer en mode dérivation. Ou il y a un risque de lâcher/arrêter la charge.

4.2.3 Passage de l'ASI à partir du mode dérivation en mode normal

Cas 1) L'ASI a été transférée manuellement en bypass :

Sélectionnez "ESC Bypass", c'est la même icône que celle utilisée pour transférer vers bypass, mais une fois utilisée, changez de nom entre "Transfert vers bypass" vers/depuis "ESC Bypass".

Remarque: la commande "Transfert vers onduleur" ne fonctionne pas dans ce cas, si vous l'avez utilisée, les onduleurs restent sur bypass mais l'icône "esc bypass" redevient "Transfert vers bypass". contourner » et appuyez ensuite sur « ESC Bypass » (même icône).

Cas 2) L'UPS est passé automatiquement en bypass:

Suivez le chemin en sélectionnant l'icône "Fonctionner" puis "Transférer vers l'onduleur", le système passe en mode normal

Normalement, le système passera automatiquement en mode Normal. Cette fonction est utilisée lorsque la fréquence du bypass est hors plage ou que l'onduleur n'est pas synchronisé avec le bypass :

4.2.4 Passage de l'ASI à partir du mode normal en mode de dérivation de maintenance

Les procédures suivantes peuvent transférer la charge de la sortie de l'ASI à la dérivation de maintenance, qui est utilisée pour la maintenance de l'ASI.

Transférez l'ASI en mode dérivation en suivant la section 4.2.2.

Retirez le couvercle du disjoncteur de dérivation de maintenance.

Allumez le disjoncteur de dérivation de maintenance. Et la charge est alimentée par dérivation de maintenance et dérivation statique.

Éteignez le disjoncteur de batterie, le disjoncteur d'entrée, le disjoncteur d'entrée de dérivation et le disjoncteur de sortie une par une.

La charge est alimentée par dérivation de maintenance.

Fig.4-7 couvercle du disjoncteur de dérivation de maintenance

Avertissement

Une fois le couvercle du disjoncteur de dérivation de maintenance retiré, le système passe automatiquement en mode dérivation.

Avertissement

Avant d'effectuer cette opération, confirmez les messages sur l'écran LCD pour vous assurer que l'alimentation de dérivation est régulière et que l'ASI est synchrone avec elle, afin de ne pas risquer une courte interruption de l'alimentation de la charge.

Danger

Même lorsque l'écran LCD est éteint, les bornes d'entrée et de sortie peuvent toujours être sous tension.

Attendez 10 minutes pour laisser le condensateur du bus CC se décharger complètement avant de retirer le couvercle.

4.2.5 Passage de l'ASI à partir du mode de dérivation de maintenance en mode normal

Les procédures décrites ci-après peuvent transférer la charge du mode Bypass de maintenance à la sortie de l'ASI.

Après la fin de l'entretien. Un par un, allumez le disjoncteur de sortie, le disjoncteur d'entrée de dérivation, le disjoncteur d'entrée et le disjoncteur de batterie.

Après 30 s, le tracé de l'indicateur de dérivation clignote et la charge est alimentée par le disjoncteur de dérivation de maintenance et la dérivation statique.

Éteignez le disjoncteur de dérivation de maintenance, fermez le couvercle du disjoncteur de dérivation de maintenance, maintenant charge est alimentée par la dérivation statique.

Sur l'écran LCD, suivez le chemin en sélectionnant l'icône «Operate», puis sélectionnez

«Fault Clear»

pour réinitialiser l'alarme de dérivation manuelle.

Le redresseur démarre suivi de l'ASI.

Après 60-90 s, le système passe en mode Normal.

Avertissement

Le système restera en mode dérivation jusqu'à ce que le couvercle du disjoncteur de dérivation de maintenance soit fixé.

4.3 Maintenance de la batterie

Si la batterie n'est pas déchargée pendant une longue période, il est nécessaire de tester l'état de la batterie.

Accédez au menu « Utilisation », comme indiqué sur la Fig.5-8 et sélectionnez l'icône « Maintenance de la batterie ». Le système passe en mode batterie pour la décharge. Le système déchargera les batteries jusqu'à ce que l'alarme « Faible tension baterie» soit donnée. En tant qu'utilisateur vous pouvez arrêter le test par l'icône « Arrêt test ».

Avec l'icône « Test batterie », les batteries seront déchargées pendant environ 30 secondes, puis transférées en mode normal.

Fig.4-8 Maintenance de la batterie

4.4 EPO

Le bouton EPO situé dans le panneau de commande et d'affichage de l'opérateur (avec couvercle pour éviter tout dysfonctionnement, voir Fig.4-9) est conçu pour couper l'ASI dans des conditions d'urgence (par exemple, incendie, inondation, etc.). Pour ce faire, il suffit d'appuyer sur le bouton EPO, et le système éteindra le redresseur, l'ASI et arrêtera immédiatement l'alimentation de la charge (y compris l'ASI et la sortie de dérivation), et la batterie cessera de se charger ou de se décharger.

Si l'utilitaire d'entrée est présent, le circuit de commande de l'ASI restera actif ; cependant, la sortie sera éteinte. Pour isoler complètement l'ASI, les utilisateurs doivent ouvrir l'alimentation secteur externe de l'ASI

Avertissement

Lorsque l'OEB est déclenché, la charge n'est pas alimentée par l'ASI. Veillez à utiliser la fonction OEB.

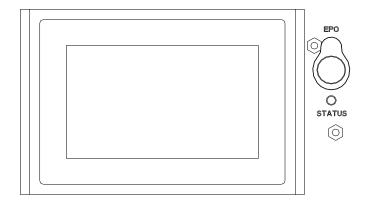


Fig. 4-9 Bouton OEB

5. Maintenance

Ce chapitre présente la maintenance de l'ASI, y compris les instructions de maintenance de la partie d'alimentation et de la dérivation de surveillance et la méthode de remplacement du filtre à poussière.

5.1 Précautions

Seuls les techniciens de maintenance peuvent entretenir l'ASI.

- 1) Attendez 10 minutes avant d'ouvrir le couvercle de la zone d'alimentation ou de la dérivation après le retrait de l'armoire
- 2) Utilisez un multimètre pour mesurer la tension entre les pièces en fonctionnement et la terre afin de vous assurer que la tension est inférieure à la tension dangereuse, c'est-à-dire que la tension CC est inférieure à 60 Vcc et que la tension CA maximale est inférieure à 42 Vca.

5.2 Instructions pour la maintenance de l'ASI

Pour la maintenance de l'ASI, faites référence au chapitre 4.3.4 pour passer en mode bypass de maintenance. Après la maintenance, repassez en mode normal conformément aux instructions du chapitre 4.3.5.

5,3. Instructions pour la maintenance de la chaîne de batteries

Pour la batterie sans entretien à l'acide plomb, lors de l'entretien de la batterie selon les exigences, la durée de vie de la batterie peut être prolongée. La durée de vie de la batterie est principalement déterminée par les facteurs suivants :

- Installation. La batterie doit être placée dans un endroit sec et frais avec une bonne ventilation. Évitez la lumière directe du soleil et gardez à l'écart de la source de chaleur. Lors de l'installation, assurez-vous de la bonne connexion aux batteries avec les mêmes caractéristiques.
- 2) Température. La température de stockage la plus appropriée est de 5 °C à 25°C, Fonctionnement de 15 à 25°C.
- 3) Courant de charge/décharge. Le meilleur courant de charge pour la batterie à l'acide de plomb est de 0,1 C. Le courant de charge maximal de la batterie peut être de 0,2 C (certaines marques peuvent être plus élevées). Le courant de décharge doit aller de 0,05 C à 3 C.
- 4) Tension de charge. Dans la plupart des cas, la batterie est en état de veille. Lorsque l'utilitaire est normal, le système charge d'abord la batterie en mode suralimentation, lorsque la batterie est presque chargée, elle passe à l'état de charge flottante.
- 5) Profondeur de décharge. Éviter les décharges profondes fréquentes, permettra de réduire considérablement la durée de vie de la batterie. Lorsque l'ASI fonctionne en mode batterie avec une charge légère ou sans charge pendant une longue période, cela entraînera une décharge profonde de la batterie.
- 6) Vérifiez périodiquement. Observez si la batterie présente une anomalie, mesurez si la tension de chaque batterie est en équilibre avec les autres. Déchargez la batterie périodiquement.

Avertissement

Une inspection fréquente est très importante!

Inspectez et vérifiez que la connexion de la batterie est serrée régulièrement, et assurez-vous qu'il n'y a pas de chaleur anormale générée par la batterie.

Avertissement

Si une batterie présente des fuites ou est endommagée, elle doit être remplacée, stockée dans un récipient résistant à l'acide sulfurique et éliminée conformément aux réglementations locales en vigueur.

La batterie au plomb est une sorte de déchet dangereux et l'un des principaux contaminants contrôlés par le gouvernement.

Par conséquent, son stockage, son transport, son utilisation et son élimination doivent être conformes aux réglementations et lois nationales ou locales relatives à l'élimination des déchets dangereux et des déchets de batteries ou à d'autres normes.

Conformément à la législation nationale, les déchets de batteries au plomb devraient être recyclés et réutilisés, et il est interdit de les éliminer autrement que par recyclage. Jeter des déchets de batteries à l'acide de plomb à volonté ou d'autres méthodes d'élimination inappropriées entraînera une grave pollution de l'environnement, et la personne qui s'en chargera assumera les responsabilités légales correspondantes.

6. Caractéristiques techniques du produit

Ce chapitre indique les caractéristiques techniques du produit, y compris les caractéristiques environnementales, les caractéristiques mécaniques et électriques.

6.1 Normes applicables

L'ASI a été conçu pour être conforme aux normes européennes et internationales suivantes :

Tableau 6-1

Article	Référence normative
Exigences générales de sécurité pour les ASI utilisés dans les zones	CEI62040-1-1 EN62040-1
Exigences de compatibilité électromagnétique (CEM) pour les ASI	IEC62040-2 CEI-EN62040-2 (2018)
Méthode de spécification des performances et des exigences d'essai	IEC62040-3

Note:

Les normes de produits susmentionnées comprennent des clauses de conformité pertinentes avec les normes génériques CEI et EN en matière de sécurité (CEI/EN/AS60950 et CEI/EN 62477-1), d'émission électromagnétique et d'immunité (séries CEI/EN61000) et de construction (séries CEI/EN60146 et 60950 et 62477-1).

6.2 <u>Caractéristiques environnementales</u>

Tableau 6-2

Article	Unité	Paramètre
Niveau de bruit acoustique à 1 mètre	dB	58 dB @ 100 % decharge, 55 dB @ 45 % de charge
Altitude de fonctionnement	m	≤1000, charge déclassée de 1% par 100 m de 1 000 m à 2 000 m
Humidité relative	%	0-95, sans condensation
Température de fonctionnement	°C	10 et 15 KVA: 0-40°C 20-30-40 KVA at PF=1: 0-30°C 20-30-40 KVA at PF=0,9: 0-40°C l'alerte pour la batterie est recommandé de 15 à 25°C, car sa durée de vie est divisée par deux pour chaque augmentation de 10°C au-dessus de 20°C
Température de stockage de l'ASI	°C	-40 ~ +70, la durée de vie de la batterie d'avertissement est réduite de moitié pour chaque augmentation de 10 °C au- dessus de 20 °C

6.3 Caractéristiques mécaniques

Tableau 6-3

Modèle	Unité	10 kVA	15 kVA	20 kVA	30 kVA	40kVA
Dimension L×P×H	mm	380*840*1400	380*840*1400	380*840*1400	500*940*1400	500*940*1400
Poids	kg	100	100	100	140	140
Couleur (s)		NOIR, RAL 7021				
Niveau de protection CEI 60529		IP20				

6.4 Caractéristiques électriques

6.4.1 Caractéristiques électrique du redresseur d'entrée

Tableau 6-4

Article	Unité	Paramètre		
Système de grille		Triphasé + Neutre + PE, (partage neutre avec l'entrée bypass)		
Tension d'entrée CA	Vca	380/400/415 std=400 V		
Plage de tension d'entrée Vca		304 à 478 Vca (Ligne-Ligne), pleine charge ; 228 V à 304 Vca (Ligne-Ligne), la charge diminue linéairement de 100 % à 60 % en fonction de la tension		
Fréquence nominale	Hz	50/60		
Plage de fréquence	Hz	40 à 70		
Facteur de puissance		>0,99		
Courant d'entrée THDi	%	<4 % (pleine charge linéaire) 10 à 15 kVA <3 % (pleine charge linéaire) 20 à 40 kVA		

6.4.2 Caractéristiques électriques de la batterie

Tableau 6-5

Éléments	Unité	Paramètres
Tension du bus de batterie	Vcc	Nominale ±240 V (total 480)
Quantité de cellules d'acide de plomb	Nonlinae	
Tension de charge flottante	V/cellule (VRLA)	2,25 V/cellule (sélectionnable à partir de 2,2 V/cellule-2,35 V/cellule) Mode de charge à courant et tension constants
Tension de charge de suralimentation	V/cellule(VRLA)	2,35V/cellule (sélectionnable à partir de : 2,30 V/cellule à 2,45 V/cellule) Mode de charge à courant et tension constants
Compensation de température (option)	mV/°C/cellule	3,0 (sélectionnable :0 à 5)
Finale tension de décharge	V/cellule(VRLA)	1,65V/cellule (sélectionnable à partir de: 1,60 ~ 1,75 , à un courant de décharge de 0,6 C 1,75 V/cellule (sélectionnable à partir de: 1,65 ~ 1,8, à un courant de décharge de 0,15 C (La tension EOD change linéairement dans la plage définie en fonction du courant de décharge)
puissance Batterie Charge	kW	selectable from : 0 to 20% * UPS capacity
Max batterie charge courant (40 batterie)	А	NOVA-10K = 3,7 A réglable (réglage max = 20%) NOVA-15K = 5,5 A réglable (réglage max = 20%) NOVA-20K = 6,7 A réglable (réglage max = 20%) NOVA-30K = 10 A réglable (réglage max = 20%) NOVA-40K = 13,3 A réglable (réglage max = 20%)
Courant de charge de la batterie, réglage d'usine	А	est compris entre 0,7 et 1,5A

Remarque : le paramètre « PM Charge Current Percent limit% » est réglable dans LCD ou MTR SW, en utilisant cette formule : " PM Charge Current Percent limit% " = (Irch / Imax) x 20

Οù

"PM Charge Current Percent limit%" est la valeur à entrer dans le réglage (LCD ou SW)

Irch est le courant de charge en A que vous souhaitez régler

Imax est le courant maximal du chargeur de batterie, voir la valeur dans le tableau ci-dessus

Ex: Puissance UPS=20kVA avec Capacité batterie= 18A/h

On aimerait charger ces batteries avec 2A donc sur la formule Irch= 2A

Calcul: "PM Charge Current Percent limit%" = (Irch / Imax) x 20 = 2 / 6,7 x 20 = 6%

Note: Lorsque la batterie utilisée est différente de la valeur par défaut de 40 (plage 32 à 44), assurez-vous que le nombre réel et le nombre défini sont les mêmes, sinon les batteries peuvent être endommagées.

6.4.3 Caractéristiques électriques de sortie de l'ASI

Tableau 6-6

Article	Unité	Paramètre	
Capacité nominale	kVA	10 / 15 / 20 / 30 / 40	
Facteur de puissance		1 (voir note 1)	
Tension CA nominale	Vca	220/230/240 (Ligne-N), std=230	
Précision de la tension	%	±1,5 % (0-100 % de charge linéaire)	
Fréquence nominale	Hz	50/60	
Régulation de fréquence	Hz	50/60±0,1 % (mode batterie)	
Plage synchronisée	Hz	par défaut ±3Hz, paramétrable±0,5 Hz±5 Hz	
Vitesse de balayage synchronisée	Hz/s	par défaut 2 Hz/s, paramétrable, 0,5 à 3	
Tension de sortie THDv	%	10 à 40 kVA <1 % (charge linéaire) 10-15 K <5,5 % (charge non linéaire), 20+30+40 kVA <6 % (charge non linéaire)	
Surcharge	%	<;110 % 60 min; 110 % à 125 %,10 min ; 125 % à150 %,1 min	
(note 1) Le modèle 20-30-40 KVA a un PF dynamique, il est PF=1 jusqu'à 30°C, plus de 30°C est 0,9			

6.4.4 Caractéristiques éléctriques de l'entrée de dérivation d'alimentation Tableau 6-7

Article	Unité	Valeur		
	Vca	380/400/415		
Tension CA nominale		(triphasé quatre fils et partage neutre avec l'entrée		
		principale du redresseur)		
	%	125 % Exploitation à long terme ;		
		125% à 130% pendant 10min ;		
Surcharge		130 % à 150 % pendant 1 min ;		
		150 % à 400 % pendant 1 s ;		
		>400 %, moins de 200 ms		
Intensité nominale du câble neutre	Α	1,7×In		
Fréquence nominale	Hz	50/60		
Temps de commutation (entre dérivation et ASI)	ms	Transfert synchronisé : 0ms		
Diago do toncion do	%	Paramétrable, par défaut -20 %~+15 %		
Plage de tension de dérivation		Limite supérieure : +10 %, +15 %, +20 %, +25 %		
		Limite inférieure : -10 %, -15 %, -20 %, -30 %, -40 %		
Plage de fréquence de dérivation	%Hz	Paramétrable, ±1Hz, ±3Hz, ±5Hz		
Plage synchronisée	Hz	Paramétrable ±0,5 Hz à ±5 Hz, par défaut ±3 Hz		

6.5 Efficacité

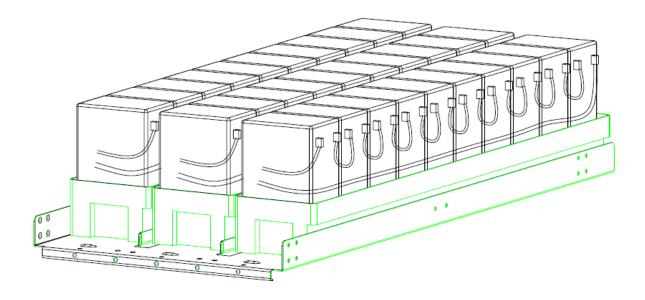
Tableau 6-8

Puissance nominale (kVA)	Unité	10 kVA/15 kVA	20 kVA/30 kVA	40kVA
Mode normal (double conversion)	%	95	95	96
Mode batterie (batterie à la tension nominale 480 Vcc et pleine charge linéaire nominale)				
Mode batterie	%	94,5	95	96

6.6 Affichage et interface

Tableau 6-9

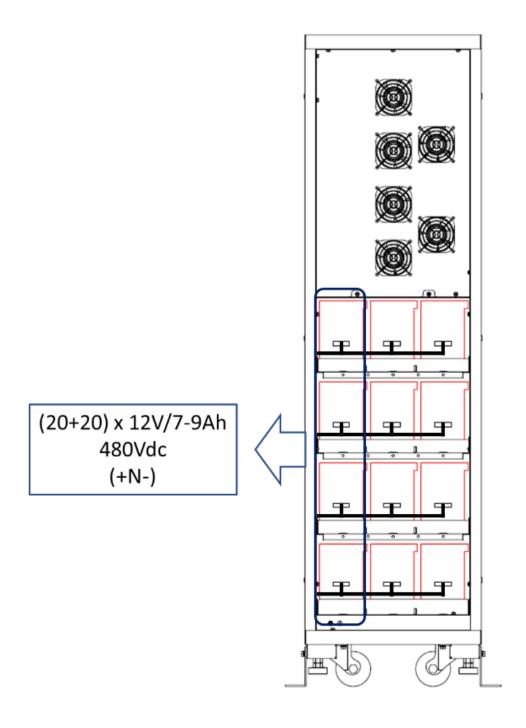
Affichage	Écran tactile	
Intovio	Standard : RS232, RS485	
Interface	Option : SNMP	

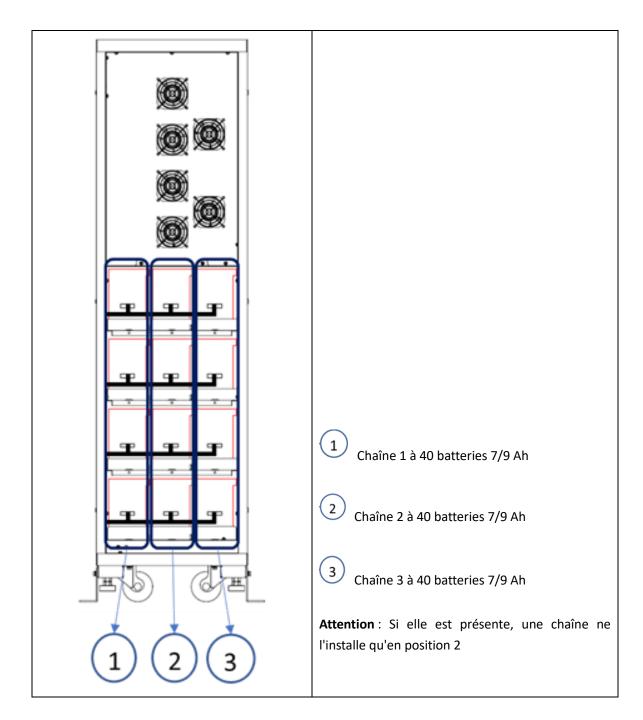

Annexe. A Installation de batteries internes

Pour les ASI 10 kVA et 20 kVA, jusqu'à 120 pcs (3 * 40) batteries 12 Vcc 7-9 Ah peuvent être installées. Pour les ASI 30 kVA et 40 kVA, jusqu'à 120 pcs (4 * 40) batteries 12 Vcc 7-9 Ah peuvent être installées.

Pour chaque chaîne, il y a 40 batteries, divisées en 4 groupes/plateau de 10 batteries, chacune connectée en série avec une connexion centrale, le plateau est un accès frontal.

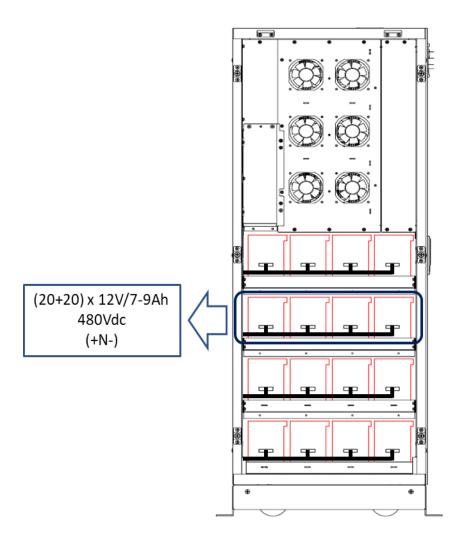
L'interconnexion entre les groupes se fait par câble avec le connecteur Anderson, reportez-vous aux schémas ci-dessous.


Les batteries sont installées dans des plateaux, chaque plateau dispose de 10 batteries 7 Ah ou 9 Ah, voir plan

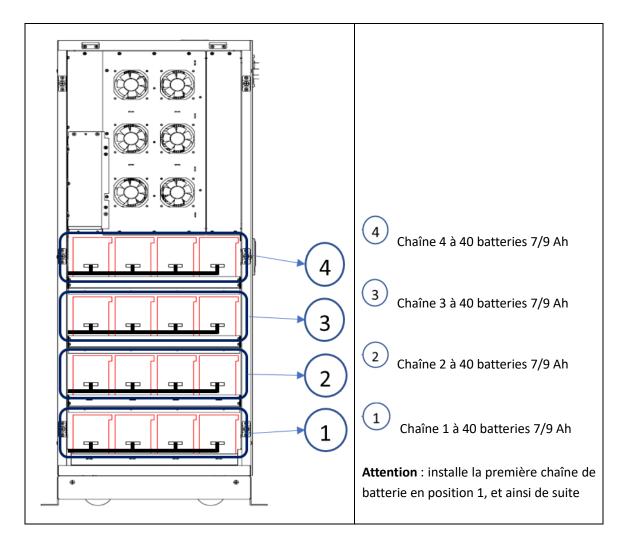


Pour les ASI de 10 kVA et 20 kVA, il est possible d'installer jusqu'à 3 chaînes de batteries de 4 pièces de 7 ou 9 Ah.

Pour les ASI de 10 kVA et 20 kVA, le minimum est d'une (1) chaîne


Les interconnexions sont réalisées avec des câbles électriques et des connecteurs de type Anderson. Utilisez uniquement le kit de batterie d'origine

Mesurez et confirmez la tension correcte de la batterie avant de la connecter à l'ASI



Pour les ASI de 30 kVA et 40 kVA, il est possible d'installer jusqu'à 4 chaînes de batteries de 40 pièces de 7 ou 9 Ah en série.

Pour les ASI de 30 kVA et 40 kVA, le minimum est de deux (2) chaînes

Les interconnexions sont réalisées avec des câbles électriques et des connecteurs de type Anderson. Utilisez uniquement le kit de batterie d'origine.

Mesurez et confirmez la tension correcte de la batterie avant de la connecter à l'ASI

Annexe. B Instructions du système parallèle pour l'ASI

L'ASI peut être parallèle ; la configuration générale est de 2 ASI en parallèle ou 3 ASI en parallèle. Si plus de 3 ASI sont en parallèle, veuillez en informer l'usine à l'avance.

1. Connexion du câble d'alimentation des 3 onduleurs en parallèle.

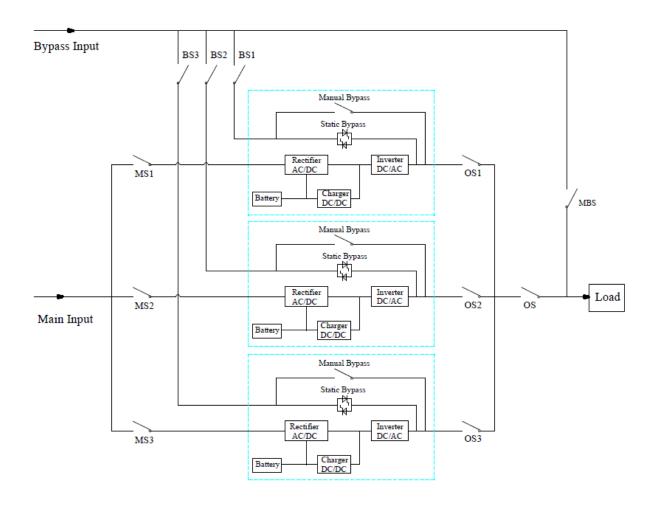
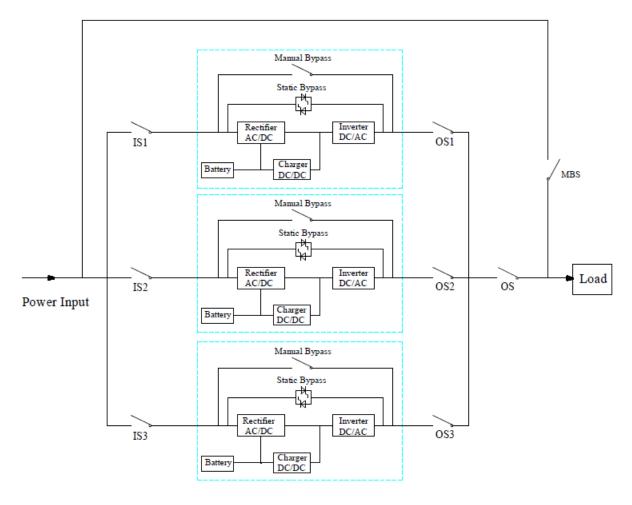
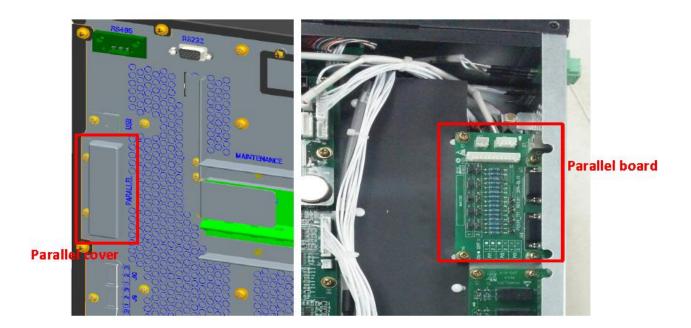



Schéma de raccordement du câble pour 3 onduleurs en parallèle (double entrée)

Note : MS1, MS2 et MS3 sont les commutateurs d'entrée principaux pour chaque ASI, BS1, BS2 et BS3 sont les commutateurs d'entrée de dérivation, OS1, OS2 et OS3 sont les commutateurs de sortie, OS est le commutateur principal de sortie du système d'alimentation, MBS est le commutateur de dérivation de maintenance.

Plan de raccordement des câbles pour 3 ASI en parallèle (entrée commune)

Note : IS1, IS2 et IS3 sont les commutateurs d'entrée pour chaque onduleur, OS1, OS2 et OS3 sont les commutateurs de sortie, OS est le commutateur principal de sortie du système d'alimentation, MBS est le commutateur de dérivation de maintenance.

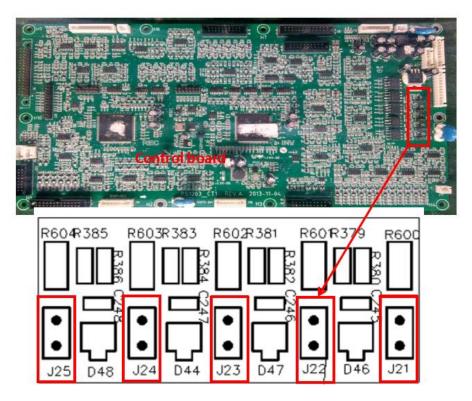

2. Paramétrage parallèle pour l'ASI

En principe, vous devez en informe l'usine avant la commande, et l'usine définira les paramètres parallèles avant la livraison. Si vous devez passer d'un système unique à un système parallèle sur site, procédez comme suit.

1) Installez la carte parallèle comme ci-dessous

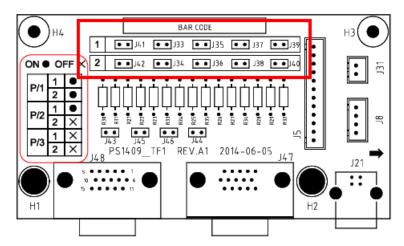
- Retirez la plaque de couverture de l'interface parallèle et le panneau de couverture des deux côtés de l'ASI ;
- Fixez la carte parallèle avec des vis ;
- Connectez J31 à la carte parallèle à J31 à la carte de contrôle avec le câble 2 broches;
- Connectez J5 à la carte parallèle à J5 à la carte de contrôle avec le câble 12 broches;
- Connectez J8 à la carte parallèle à J7 sur la carte interface d'affichage TF6, avec le câble 4 broches.
- Réinstallez le panneau de couverture de l'alimentation sans coupure.

Note: Veuillez faire référence aux photos ci-dessous.



Installation de la carte parallèle.

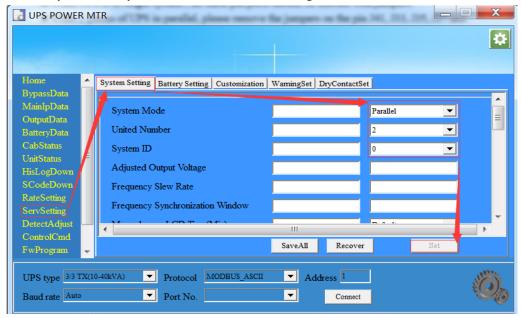
Les photos sont du modèle 10, 15, 40kVA, sur le modèle 20 et 30kVA le connecteur est le même, tandis que la position du circuit imprimé est différente



2) Réglez la carte parallèle comme ci-dessous

Ce qui précède est la carte de contrôle, veuillez trouver les ports pin J21, J22, J23, J24 et J25.

- Lorsque l'ASI est dans un seul système, le J21-J25 doit être court-circuité avec des cavaliers.
- Lorsque le système l'ASI est en parallèle, veuillez retirer les cavaliers de J21 à J25.



Ce qui précède est la carte parallèle, veuillez trouver les ports pin, J41, J33, J35, J37, J39, J42, J34, J36, J38, J40.

- Lorsque l'ASI est dans un seul système , tous ces ports pin doivent être court-circuités avec des cavaliers.
- Lorsque 2 ASI sont en parallèle, veuillez retirer les cavaliers sur les broches J41, J33, J35, J37 et J39, et garder J42, J34, J36, J38 et J40 en court-circuit avec les cavaliers.
- Lorsque 3 ASI sont en parallèle, veuillez retirer tous les cavaliers ci-dessus.

3) Définir les paramètres parallèles de l'ASI à l'aide du logiciel MTR

Ci-dessus se trouve notre logiciel MTR, connectez MTR SW à l'ASI, trouvez la page de paramétrage, définie comme ci-dessous.

2 ASI en parallèle

Le premier ASI doit être paramétré comme ci-dessous.

Mode système : Parallèle

Numéro uni : 2 ID système : 0

Le deuxième ASI doit être paramétré comme ci-dessous.

Mode système : Parallèle

Numéro uni : 2 ID système : 1

• 3 ASI en parallèle

Le premier ASI doit être paramétré comme ci-dessous.

Mode système : Parallèle

Numéro uni : 3 ID système : 0

Le deuxième ASI doit être paramétré comme ci-dessous.

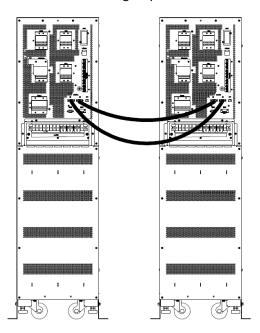
Mode système : Parallèle

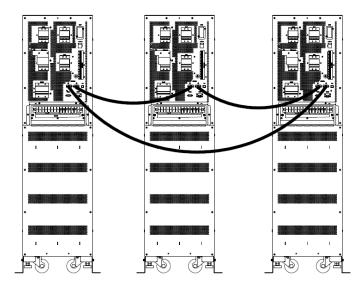
Numéro uni : 3 ID système : 1

Le troisième ASI doit être paramétré comme ci-dessous.

Mode système : Parallèle

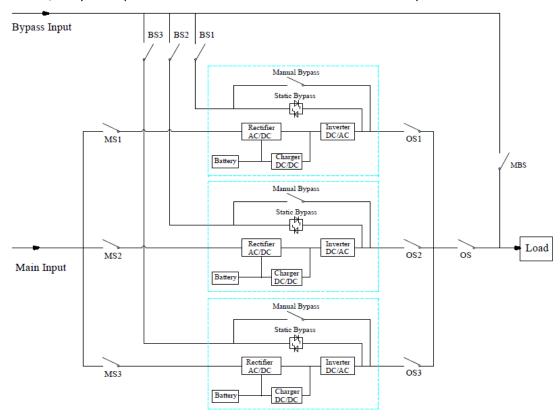
Numéro uni : 3 ID système : 2


Note: Conserver les autres paramètres identiques pour l'ASI dans le système parallèle.


4) Branchez les câbles de signaux parallèles

Câble de signal parallèle

Connexion du câble de signal pour 2 onduleurs en parallèle

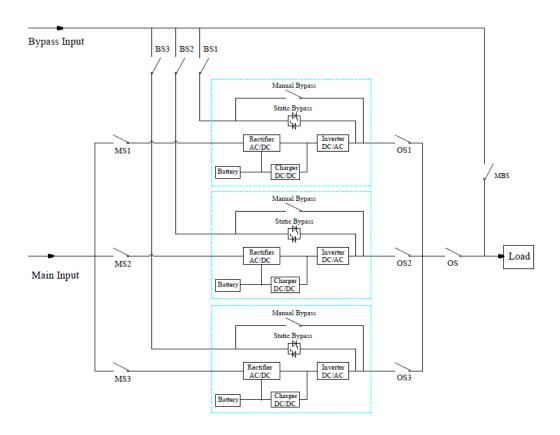


Connexion du câble de signal pour 3 onduleurs en parallèle

5) Essai du système parallèle

Après tout ce qui précède, veuillez procéder comme ci-dessous pour tester le système parallèle. Ci-dessous, un système parallèle de 3 ASI avec double entrée à titre d'exemple.

Note: Avant l'opération, veuillez garder tous les interrupteurs éteints.


- 1) Fermez initialement OS1, puis fBS1 et MS1, le premier ASI démarrera automatiquement, pour les détails de démarrage, faites référence au manuel de l'utilisateur. Environ 2 minutes plus tard, le premier ASI terminera le démarrage et fermera définitivement l'interrupteur de la batterie. À l'heure actuelle, il ne devrait y avoir aucune alarme sur l'écran d'affichage, vous pouvez vérifier les informations sur l'écran, et ils devraient être identiques à celle de sa plaque signalétique. Si le démarrage est raté, veuillez contacter le technicien de mise en service ou le fournisseur.
- Éteignez l'interrupteur de la batterie, puis BS1 et MS1, et enfin éteignez OS1, le premier ASI sera complètement arrêté.
- 3) Fonctionne sur le deuxième et le troisième ASI comme le premier mentionné ci-dessus.
- 4) Après les opérations ci-dessus et la confirmation qu'il n'y a pas d'anomalie, veuillez d'abord fermer OS1, OS2 et OS3 un par un, puis fermer BS1, BS2 et BS3, et encore MS1, MS2 et MS3, après environ 2 minutes, les 3 ASI devraient démarrer avec succès en même temps, et enfin fermez les interrupteurs de batterie pour chaque ASI, au moment où il ne devrait pas y avoir d'alarme sur l'écran d'affichage.
- 5) Utilisez la fonction « Transférer vers dérivation » sur le premier onduleur comme ci-dessous, les 3 onduleurs doivent être transférés en mode dérivation en même temps, puis utilisez la fonction « Échap dérivation », les 3 onduleurs doivent être retransférés en mode ASI. S'il n'y a pas de problème
- 6) Fermez le commutateur de sortie principal OS, le démarrage est terminé, les utilisateurs peuvent démarrer leurs équipements, un par un.

4. Opérations pour le système parallèle

1) Coupez l'ASI.

Si vous souhaitez arrêter un ou tous les onduleurs, veuillez procéder comme ci-dessous.

Éteignez d'abord l'interrupteur de la batterie, puis éteignez BS1 et MS1 un par un, et enfin éteignez OS1, le premier ASI sera éteint.

Si les utilisateurs veulent arrêter le deuxième et le troisième ASI, veuillez fonctionner comme cidessus, mais il faut noter si la capacité restante du système peut répondre à la capacité de charge.

2) Transférer le système parallèle à partir du mode normal en mode bypass de maintenance.

veuillez opérer comme ci-dessous.

- a) Utilisez « Transférer en dérivation » sur l'écran d'affichage de n'importe quel onduleur, tous les onduleurs seront transférés en mode dérivation en même temps.
- b) Retirez la plaque métallique sur l'interrupteur de dérivation manuel de tous les ASI.
- c) Mettez en ON le commutateur de maintenance MBS de tous les ASI.
- d) Éteignez tous les interrupteurs de batterie un par un.
- e) Désactivez MS1, MS2 et MS3 (entrée secteur redresseur).
- f) Désactivez BS1, BS2 et BS3 (entrée secteur bypass).
- g) Désactivez OS1, OS2, OS3 et OS (sortie). Tous les ASI seront éteints ; la charge est alimentée par la dérivation de maintenance.

3) Retransférez le système parallèle à partir du mode de dérivation de maintenance en mode normal.

veuillez opérer comme ci-dessous.

- a) Allumez OS, OS1, OS2 et OS3 (sortie) un par un.
- b) Allumez BS1, BS2 et BS3 une par une, environ 20secondes plus tard, confirmer sur l'écran LCD que la dérivation statique de chaque ASI doit être activée.
- c) Éteignez le commutateur de dérivation de maintenance MSB et fixer la plaque métallique de tous les ASI.
- d) Allumez MS1, MS2 et MS3.
- e) Allumez tous les interrupteurs de la batterie un par un.
- f) Sur l'écran LCD, suivez le chemin en sélectionnant l'icône « Operate », puis sélectionnez

«Fault Clear »

pour réinitialiser l'alarme de dérivation manuelle.

Le redresseur démarre suivi de l'onduleurs.

Après 60-90 s, le système passe en mode Normal.

Avertissement

Le système restera en mode dérivation jusqu'à ce que le couvercle du disjoncteur de dérivation de maintenance soit fixé sur tous les ASI.

Informations de recyclage conformément aux DEEE

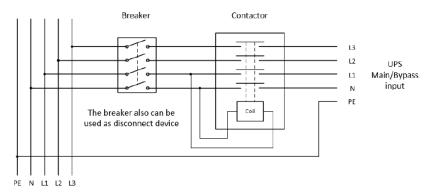
Le produit est marqué avec le symbole de la poubelle à roulettes. Il indique qu'à la fin de la vie, le produit doit entrer dans le système de recyclage.

Veuillez le jeter séparément à un point de collecte approprié et ne pas le placer dans le flux normal de déchets.

La figure ci-dessous montre le symbole de la poubelle à roulettes indiquant la collecte séparée pour les équipements électriques et électroniques (EEE).

La barre horizontale sous la poubelle barrée indique que l'équipement a été fabriqué après l'entrée en vigueur de la directive en 2005.

Les principales parties de l'entraînement peuvent être recyclées pour préserver les ressources naturelles et l'énergie. Les pièces et les matériaux du produit doivent être démontés et séparés.


Contactez votre distributeur local pour plus d'informations sur les aspects environnementaux. Le traitement de fin de vie doit respecter les réglementations internationales et nationales.

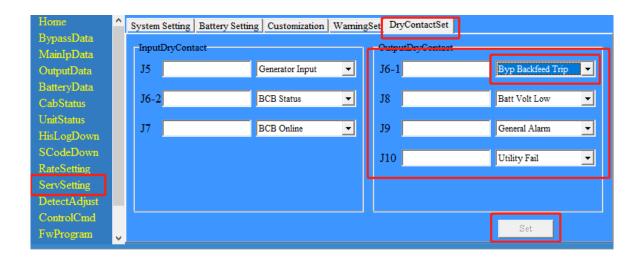
Annexe C Instructions pour le retour de tension

A pour but d'éviter un retour d'énergie vers le réseau électrique en cas de panne interne de l'UPS pendant le fonctionnement en mode batterie.

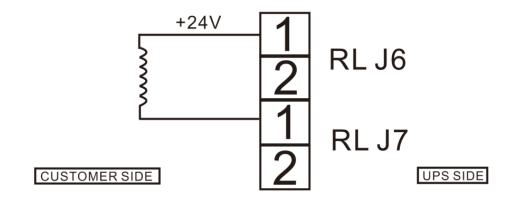
Pour éviter ce qui précède, il est nécessaire d'appliquer le schéma ci-dessous:

Three phase input system

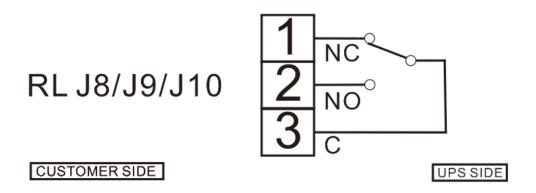
Note: En cas de réseaux séparés, appliquez le schéma à la fois au réseau d'entrée et au réseau auxiliaire (By-Pass).


La taille du contacteur à utiliser doit tenir compte des courants maximaux circulant sur la section d'entrée et de by-pass, résumés ci-dessous :

Indice	10kVA	15kVA	20kVA	30kVA	40kVA
Courant du réseau d'entrée (A)	18	28	35	55	70
Courant du réseau auxiliaire (A)	15	23	30	45	60


Voici un exemple utilisant un contact sec de tableau et une bobine porteuse de courant.

Dans ce cas, il est nécessaire, via le logiciel Expert MTR, de paramétrer la sortie contact sec J6-1 en "BYP Backfeed Trip" (voir ci-dessous) :


Bobine de Backfeed

Lorsque l'ASI détecte une défaillance de Backfeed, un signal de commande "24VDC/20mA" sera envoyé entre J6-1 et J7-1. Ce signal est transmis à la bobine à impulsion de courant de la protection d'entrée MCB (ou MCCB), qui déconnectera le circuit Backfeed.

Les autres contacts de sortie secs (J8, J9 et J10) peuvent être utilisés comme signal à distance pour savoir quand le circuit de rétro-alimentation s'est déclenché.

RL	RL J8/J9/10 Contact de Backfeed	Lorsqu'aucune défaillance de Backfeed ne se produit, le contact 1-3 est normalement fermé, et le contact 2-3 est normalement ouvert.
J8/J9/10		En cas de défaillance de Backfeed, le contact 1-3 s'ouvre, tandis
		que le contact 2-3 se ferme.

ÉTIQUETTE DE DANGER

Dans tous les cas, pour avertir le personnel de ce danger, une étiquette suivante doit être apposée sur tous les sectionneurs, contacteurs et protections d'alimentation :

Avant d'intervenir sur ce circuit :

- Déconnectez le système d'alimentation (ASI).
- Ensuite, vérifiez l'absence de tension dangereuse entre toutes les bornes, y compris la terre de protection.

Risque de Retour de Tension

