

BENUTZERHANDBUCH DE

NOVA

USV Online-Doppelumwandlung

10 - 40 kVA

Dreiphasig / Dreiphasig

- Accedi al link ed utilizza la password per scaricare il manuale in Italiano
- Access the link and use the password to download the manual in English
- Accédez au lien et utilisez le mot de passe pour télécharger le manuel en Français
- Rufen Sie den Link auf und verwenden Sie das Passwort, um das Handbuch auf Deutsch herunterzuladen

Inhalt

Vo	prwort	6
	Verwendung	6
	Benutzer	6
	Hinweis	6
Sic	cherheitsmaßnahmen	7
	Definition der Sicherheitsmeldung	7
	Warnschild	7
	Sicherheitsanleitung	7
	Austesten und Bedienen	8
	Wartung und Ersatz	9
	Batteriesicherheit	9
	Entsorgung	10
1.	USV-Struktur und Einführung	11
	1.1 USV-Struktur	11
	1.1.1 USV-Konfiguration	11
	1.1.2 USV-Struktur	11
	1.1.3 Details für die USV Vorder- und Rückansichten	14
	1.2 Produkteinführung	16
	1.2.1 USV Systembeschreibung	16
	1.2.2 Betriebsmodus	17
2.	Installation	20
	2.1 Standort	20
	2.1.1 Installationsumgebung	20
	2.1.2 Standortauswahl	20
	2.1.3 Größe und Gewicht	20
	2.2 Entladen und Auspacken	22
	2.2.1 Bewegen und Auspacken des Schrankes	22
	2.3 Positionierung	24
	2.3.1 Positionierung des Schrankes	24
	2.4 Batterie	25
	2.5 Kabeleinführung	26
	2.6 Stromkabel	27
	2.6.1 Spezifikationen	27
	2.6.2 Spezifikationen für die Netzkabelklemme	28
	2.6.3 Leistungsschalter	28
	2.6.4 Verbindung Stromkabel	29
	2.7 Steuer- und Kommunikationskabel	30
	2.7.1 Schnittstelle für Trockenkontakte	31
	2.7.2 Kommunikationsschnittstelle	40
3. l	Kontroll- und LCD-Anzeigefeld	41
	3.1 Einleitung	41
	3.2 LCD Rildschirm	<i>Δ</i> 1

3.3 Hauptmenü	42
4. Betrieb5	1
4.1 Inbetriebnahme der USV	51
4.1.1 Start im Normalmodus	51
4.1.2 Starten von Batterie	53
4.2 Verfahren zum Wechseln zwischen Betriebsmodi	53
4.2.1 Umschalten der USV aus dem Normalmodus in den Batteriemodus	53
4.2.2 Umschalten der USV in den Bypass-Modus vom Normalmodus	53
4.2.3 Umschalten der USV aus dem Bypass-Modus in den Normalmodus	54
4.2.4 Umschalten der USV in den Wartungs-Bypass-Modus aus dem Normalmodus	54
4.2.5 Schalten der USV aus dem Wartungsbypass-Modus in den Normalmodus	55
4.3 Batteriewartung	55
4.4 EPO	56
5. Wartung5	7
5.1 Vorsichtsmaßnahmen	57
5.2 Anweisungen zur Wartung der USV	57
5,3. Anweisungen zur Wartung des Batteriestrangs	57
6. Produktspezifikationen5	9
6.1 Anwendbare Standards	59
6.2 Umwelteigenschaften	59
6.3 Mechanische Eigenschaften	60
6.4 Elektrische Eigenschaften	60
6.4.1 Elektrische Eigenschaften Eingangsgleichrichter	60
6.4.2 Elektrische Eigenschaften Batterie	61
6.4.3 Elektrische Eigenschaften Wechselrichter-Ausgang	62
6.4.4 Elektrische Eigenschaften Bypass-Netzeingang	62
6.5 Effizienz	63
6.6 Anzeige und Schnittstelle	63
Anhang. A Installation der internen Batterien6	4
Anhang. B Anleitung des Parallelsystems für USV6	9
Anhang C: Anweisungen zur Rückspannungssicherung8	0

Vorwort

Verwendung

Das Handbuch enthält Informationen zu Installation, Verwendung, Betrieb und Wartung der USV. Bitte lesen Sie dieses Handbuch vor der Installation sorgfältig durch.

Benutzer

Autorisierte Person

Hinweis

Unsere Firma bietet einen umfassenden technischen Kundendienst und Service. Der Kunde kann sich an unser lokales Büro oder ein Kundendienstzentrum wenden, um Hilfe zu erhalten.

Das Handbuch wird aufgrund der Produktaktualisierung oder aus anderen Gründen unregelmäßig aktualisiert.

Sofern nicht anders vereinbart, dient das Handbuch nur als Richtlinie für Benutzer und jegliche Aussagen oder Informationen in diesem Handbuch geben keine ausdrückliche oder implizite Garantie.

Sicherheitsmaßnahmen

Dieses Handbuch enthält Informationen zur Installation und zum Betrieb der USV. Bitte lesen Sie dieses Handbuch vor der Installation sorgfältig durch.

Die USV kann erst in Betrieb genommen werden, wenn er von einem vom Hersteller (oder seinem Vertreter) zugelassenen Techniker in Auftrag gegeben wurde. Andernfalls könnte dies zu einem Sicherheitsrisiko für das Personal, zu Fehlfunktionen der Ausrüstung und zum Erlöschen der Garantie führen.

Definition der Sicherheitsmeldung

Gefahr: Wenn diese Anforderung ignoriert wird, kann dies schwere Verletzungen oder sogar den Tod zur Folge haben.

Warnung: Es kann zu Personen- oder Sachschäden kommen, wenn diese ist Anforderung ignoriert wird. Achtung: Wenn diese Anforderung ignoriert wird, kann ein Geräteschaden, Datenverlust oder eine schlechte Leistung verursacht werden.

Inbetriebnehmer: Der Ingenieur, der das Gerät installiert oder betreibt, sollte in Elektrizität und Sicherheit gut ausgebildet sein und mit dem Betrieb, der Fehlersuche und der Wartung der Ausrüstung vertraut sein.

Warnschild

Das Warnschild weist auf mögliche Verletzungen oder Geräteschäden hin und weist auf den richtigen Schritt zur Vermeidung der Gefahr hin. In diesem Handbuch gibt es drei Arten von Warnschildern wie unten aufgeführt.

Schilder	Beschreibung
Danger	Wenn diese Anforderung ignoriert wird, kann dies schwere Verletzungen oder sogar den Tod zur Folge haben.
Warning	Es kann zu Personen- oder Sachschäden kommen, wenn diese Anforderung ignoriert wird.
Attention	Wenn diese Anforderung ignoriert wird, kann ein Geräteschaden, Datenverlust oder eine schlechte Leistung verursacht werden.

Sicherheitsanleitung

 Wird nur von Inbetriebnehmern durchgeführt. Diese USV ist nur für kommerzielle und industrielle Ar konzipiert und nicht für die Verwendung in lebenserhalten oder Systemen bestimmt. 	
Warning	• Lesen Sie vor dem Betrieb alle Warnhinweise sorgfältig durch und befolgen Sie die Anweisungen.

•	Wenn das System läuft, berühren Sie die Oberfläche nicht mit diesem Etikett, um Verbrennungen zu vermeiden.
•	ESD-empfindliche Komponenten in der USV, Anti-ESD-Maßnahme sollte vor der Handhabung durchgeführt werden.

Handhabung & Installation

Danger Danger	 Halten Sie das Gerät von Wärmequellen oder Luftauslässen fern. Verwenden Sie im Falle eines Brandes nur Trockenpulver- oder Gas-Feuerlöscher, da Feuerlöscher mit Flüssigkeiten elektrischen Schlag
	verursachen können.
	Starten Sie das System nicht, wenn Schäden oder abnormale Teile
A	festgestellt wurden.
Warning	Das Berühren der USV mit nassen Materialien oder Händen kann zu
	Stromschlägen führen.
	Verwenden Sie geeignete Einrichtungen für die Handhabung und
	Installation der USV. Um Verletzungen zu vermeiden, sind Schutzschuhe,
\wedge	Schutzkleidung und andere Schutzvorrichtungen erforderlich.
Attention	• Halten Sie die USV während der Positionierung vor Stößen oder
	Vibrationen.
	• Installieren Sie die USV in einer geeigneten Umgebung, weitere
	Einzelheiten finden Sie in Abschnitt 2.3.

Austesten und Bedienen

A Danger	 Stellen Sie sicher, dass das Erdungskabel ordnungsgemäß angeschlossen ist, bevor Sie die Netzkabel anschließen. Das Erdungskabel und das Nullleiterkabel müssen den örtlichen und nationalen Vorschriften entsprechen. Bevor Sie die Kabel verschieben oder wieder anschließen, stellen Sie sicher, dass alle Stromquellen abgeschaltet sind, und warten Sie mindestens 10 Minuten auf die interne Entladung. Verwenden Sie ein Multimeter, um die Spannung an den Klemmen zu messen und stellen Sie sicher, dass die Spannung vor dem Betrieb unter 36V liegt .
Attention	 Die Erdableitströme der Last von diesem Fehlerstromschutzschalter oder Fehlerstromschutzschalter getragen werden. Die anfängliche Überprüfung und Inspektion sollte nach längerer Lagerung der USV durchgeführt werden.

Wartung und Ersatz

- Alle Wartungs- und Servicearbeiten an der Ausrüstung, die einen internen Zugang beinhalten, erfordern spezielle Werkzeuge und sollten nur von geschultem Personal ausgeführt werden. Die Komponenten, auf die durch Öffnen der Schutzabdeckung mit Werkzeugen zugegriffen werden kann, können nicht vom Benutzer gewartet werden.
- Diese USV steht in voller Übereinstimmung mit "IEC /EN62040-1 Allgemeine Anforderungen und Sicherheitsanforderungen für den Einsatz im USV-Zugangsbereich". Im Batteriebereich sind gefährliche Spannungen vorhanden.
- Das Risiko eines Kontakts mit diesen hohen Spannungen ist jedoch für Nicht-Service-Personal minimiert. Da die Komponente mit gefährlicher Spannung nur durch Öffnen der Schutzabdeckung mit einem Werkzeug berührt werden kann, wird die Möglichkeit des Berührens von Hochspannungskomponenten minimiert. Es besteht kein Risiko für das Personal beim normalen Betrieb der Ausrüstung gemäß den empfohlenen Betriebsverfahren in diesem Handbuch.

Batteriesicherheit

- Alle Wartungs- und Servicearbeiten an der Batterie, die einen internen Zugang beinhalten, erfordern spezielle Werkzeuge oder Schlüssel und sollten nur von geschultem Personal ausgeführt werden.
- Bei Verbinden der Batterie, überschreitet die Batterieanschlussspannung 400Vdc und ist möglicherweise tödlich.
- Batteriehersteller liefern Details zu den notwendigen Vorsichtsmaßnahmen, die bei Arbeiten in oder in der Nähe einer großen Batteriezellenbank zu beachten sind. Diese Vorsichtsmaßnahmen sollten implizit jederzeit beachtet werden. Besondere Aufmerksamkeit sollte den Empfehlungen hinsichtlich der lokalen Umweltbedingungen und der Bereitstellung von Schutzkleidung, Erste-Hilfe- und Brandbekämpfungseinrichtungen gewidmet werden.
- Die Umgebungstemperatur ist ein wichtiger Faktor bei der Bestimmung der Lebensdauer der Batterie. Die Nennbetriebstemperatur der Batterie ist 20°C. Arbeiten über dieser Temperatur führen zur Reduzierung der Lebensdauer der Batterie. Wechseln Sie die Batterie regelmäßig gemäß den Batterie-Benutzerhandbüchern, um die Sicherungszeit der USV sicherzustellen.
- Tauschen Sie die Batterien nur durch den gleichen Typ und die gleiche Nummer aus, da dies zu einer Explosion oder einer schlechten Leistung führen kann.
- Beachten Sie beim Anschließen der Batterie die Vorsichtsmaßnahmen für den Hochspannungsbetrieb, bevor Sie die Batterie abnehmen und verwenden, überprüfen Sie das Aussehen der Batterien. Wenn die

Verpackung beschädigt ist oder die Batterieklemme korrodiert oder verrostet ist oder die Schale gebrochen, verformt oder undicht ist, ersetzen Sie sie durch ein neues Produkt. Andernfalls können Batteriekapazitätsreduktion, elektrische Leckage oder Feuer verursacht werden.

- Bevor Sie die Batterie in Betrieb nehmen, entfernen Sie den Fingerring, die Uhr, die Halskette, das Armband und andere Metallschmuckstücke
- Gummihandschuhe tragen.
- Augenschutz sollte getragen werden, um Verletzungen durch zufällige Lichtbögen zu vermeiden.
- Verwenden Sie nur Werkzeuge (z. B. Schraubenschlüssel) mit isolierten Griffen.
- Die Batterien sind sehr schwer. Bitte handhaben und heben Sie die Batterie mit der richtigen Methode an, um Verletzungen oder Schäden an der Batterieklemme zu vermeiden.
- Zerlegen, modifizieren oder beschädigen Sie die Batterie nicht.
 Andernfalls kann es zu einem Kurzschluss, zu Leckagen oder sogar zu Personenschäden kommen.
- Die Batterie enthält Schwefelsäure. Im normalen Betrieb ist die gesamte Schwefelsäure in der Batterie verschlossen. Wenn das Batteriegehäuse jedoch zerbrochen ist, tritt Säure aus der Batterie aus. Tragen Sie deshalb beim Betrieb der Batterie eine Schutzbrille, Gummihandschuhe und einen Rock. Andernfalls können Sie blind werden, wenn Säure in Ihre Augen gelangt und Ihre Haut durch die Säure geschädigt wird.
- Am Ende der Batterielebensdauer kann die Batterie einen internen Kurzschluss, einen Elektrolytverlust und eine Erosion der positiven / negativen Platten aufweisen.
 - Wenn dieser Zustand fortdauert, kann die Batterie außer Kontrolle geraten, anschwellen oder auslaufen. Stellen Sie sicher, dass die Batterie ausgetauscht wird, bevor diese Phänomene auftreten.
- Wenn eine Batterie Elektrolyt verliert oder anderweitig physikalisch beschädigt ist, muss sie ausgetauscht, in einem schwefelsäurebeständigen Behälter gelagert und entsprechend den örtlichen Vorschriften entsorgt werden.
- Wenn Elektrolyt in Kontakt mit der Haut kommt, sollte das betroffene Gebiet sofort mit Wasser gewaschen werden.

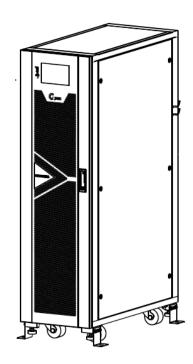
Entsorgung

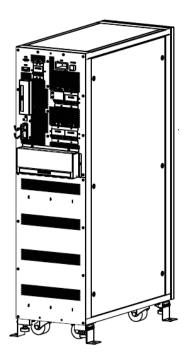
Entsorgen Sie die aufgebrauchte Batterie gemäß den lokalen Bestimmungen.

1. USV-Struktur und Einführung

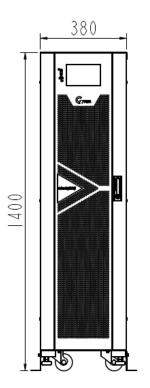
1.1 USV-Struktur

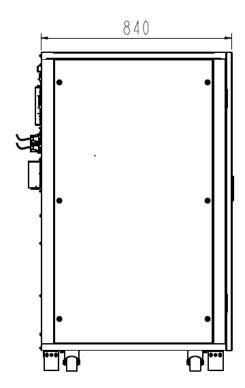
1.1.1 USV-Konfiguration

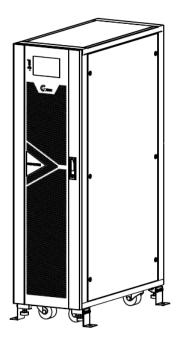

Die USV-Konfiguration finden Sie in der Tabelle 1-1.

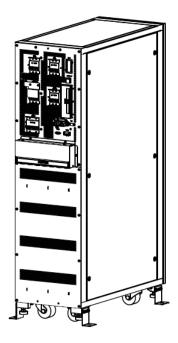

Tabelle 1-1 USV Konfiguration

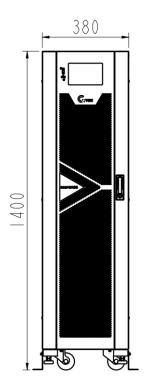
Artikel	Bauteile	Menge	Anmerkungen	
	Schutzschalter	5	Standard	
	Dual-Eingang		Standard	
	Parallele Karte,	1	Optionen	
10-40kVA	Potentialfreier Kontakt	1	Ctondord	
10-40KVA	Karte	1	Standard	
	Kaltstart		Optionen	
	Staubfilter	1	Optionen	
	SNMP	1	Optionen	

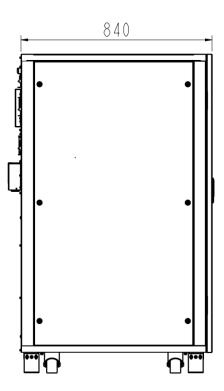

1.1.2 USV-Struktur


Die USV-Strukturen sind wie in Abb. 1-1 dargestellt.

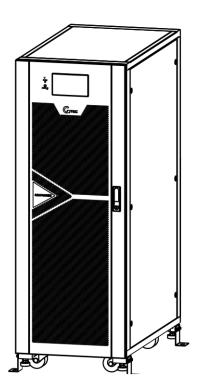


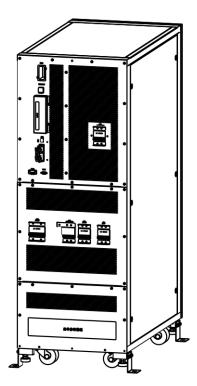


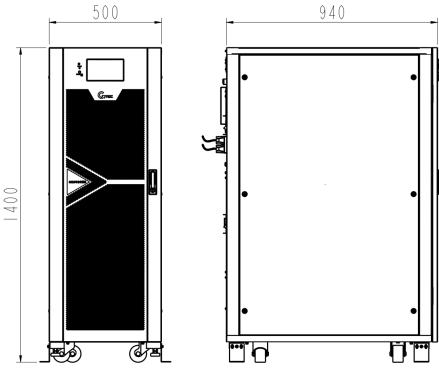




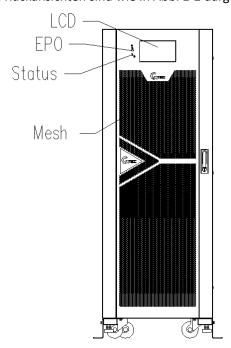
(a) Die Struktur von 10kVA/15kVA (Einheit: mm)





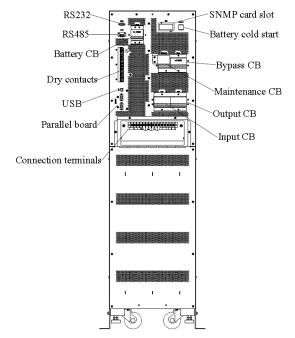


(b) Die Struktur von 20kVA (Einheit: mm)

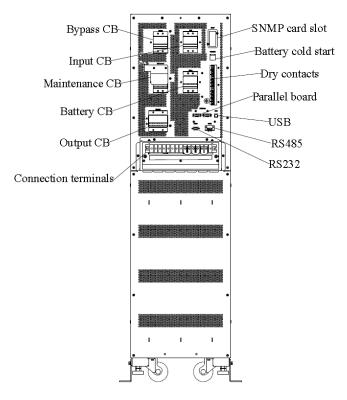


(c) Die Struktur von 30kVA/40kVA (Einheit: mm)

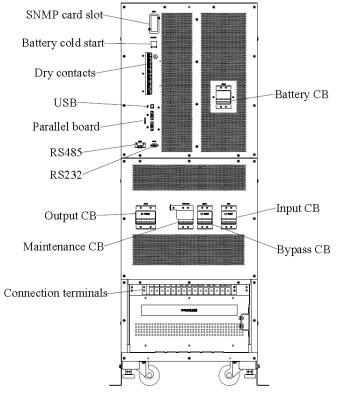
Abbildung 1-1 USV-Struktur


1.1.3 Details für die USV Vorder- und Rückansichten

Die USV Vorder- und Rückansichten sind wie in Abb. 1-2 dargestellt.



(a) Die Details der Vorderansicht für 10-40kVA


(b) Die Details der Rückansicht für 10kVA und 15kVA

(c) Die Details der Rückansicht für 20kVA

Hinweis: USB-Anschluss ist verfügbar in der parallelen Karte

(d) Die Details der Rückansicht für 30kVA und 40kVA

Abbildung 1-2 Details für die USV Vorder- und Rückansichten

1.2 Produkteinführung

1.2.1 USV Systembeschreibung

Die USV besteht aus folgenden Teilen: Gleichrichter, Ladegerät, Wechselrichter, statischer Bypass-Schalter und Wartungs-Bypass-Trennschalter. Ein oder mehrere Batteriestränge sollten im Inneren installiert werden, um Reserveenergie bereitzustellen, wenn das Versorgungsunternehmen ausfällt. Die USV-Strukturen sind in Abbildung 1-3 dargestellt.

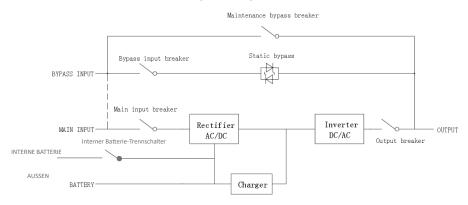


Abbildung 1-3 USV-Blockdiagramm

1.2.2 Betriebsmodus

Die USV ist eine Online-Doppelwandler-USV, die den Betrieb in den folgenden Modi ermöglicht:

- Normaler Modus
- Batterie-Modus
- Bypass-Modus
- Wartungsmodus (manueller Bypass)
- ECO-Modus
- Frequenz Umwandler-Modus

1.2.2.1 Normaler Modus

Der Wechselrichter versorgt die kritische Wechselstromlast kontinuierlich mit Wechselstrom. Der Gleichrichter bezieht Strom von der Wechselstrom-Netzeingangsquelle und liefert Gleichstrom an den Wechselrichter, während das Ladegerät den Gleichstrom vom Gleichrichter ableitet und die zugehörigen Reservebatterien auflädt.

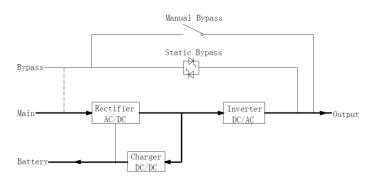


Abbildung 1-4 Normalbetriebsdiagramm

1.2.2.2 Batterie-Modus

Bei einem Ausfall der AC-Netzeingangsleistung bezieht der Wechselrichter Strom von den Batterien und versorgt die kritische AC-Last mit AC-Leistung. Die kritische Last wird nicht unterbrochen. Nach Wiederherstellung der Netzstromversorgung wechselt die USV automatisch in den Normalmodus, ohne dass der Benutzer eingreifen muss.

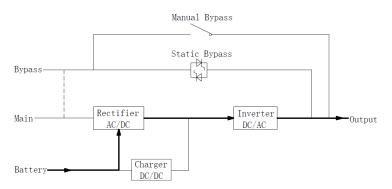


Abbildung 1-5 Betriebsdiagramm im Batteriemodus

Hinweis: Mit der Funktion "Batterie-Kaltstart" konnte die USV ohne Netzbetrieb starten.

1.2.2.3 Bypass-Modus

Wenn die Überlastkapazität des Wechselrichters im Normalbetrieb überschritten wird oder der Wechselrichter aus irgendeinem Grund nicht verfügbar ist, führt der statische Schalter eine Lastübertragung vom Wechselrichter auf die Bypass-Quelle durch, ohne die kritische AC-Last zu unterbrechen. Wenn der Wechselrichter asynchron mit der Bypass-Quelle ist, würde eine Unterbrechung in der Übertragung vom Wechselrichter zum Bypass vorliegen. Dies dient dazu, große Querströme aufgrund der Parallelschaltung von nicht synchronisierten Wechselstromquellen zu vermeiden. Diese Unterbrechung ist programmierbar, aber die typische Einstellung beträgt weniger als 3/4 eines elektrischen Zyklus, z. B. weniger als 15 ms bei 50 Hz-Systemen oder weniger als 12,5 ms bei 60 Hz-Systemen. Die Aktion der Übertragung/erneuten Übertragung kann durch den Befehl über den Monitorbildschirm ausgeführt werden.

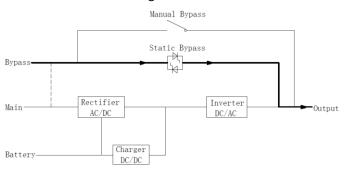


Abbildung 1-6 Betriebsdiagramm des Bypass-Modus

1.2.2.4 Wartungsmodus (Manueller Bypass)

Ein manueller Bypass-Schalter ist verfügbar, um die Kontinuität der Versorgung der kritischen Last zu gewährleisten, wenn die USV beispielsweise während eines Wartungsvorgangs nicht verfügbar ist.

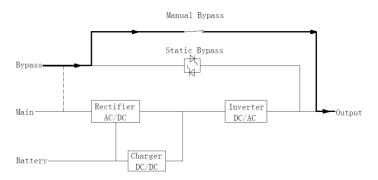


Abbildung 1-7 Betriebsdiagramm des Wartungsmodus

Gefahr

Während des Wartungsmodus liegen gefährliche Spannungen an den Klemmen von Eingang, Ausgang, Neutralleiter, Batterie und den Klemmen des Unterbrechers an, selbst wenn alle Schalter und das LCD ausgeschaltet sind.

1.2.2.5 ECO-Modus

Um die Systemeffizienz zu verbessern, arbeitet das USV-System zur normalen Zeit im Bypass-Modus, und der Wechselrichter ist im Standby-Modus. Wenn das Netz aus dem Bypass ausfällt, wechselt die USV in den Batteriemodus und der Wechselrichter versorgt die Last.

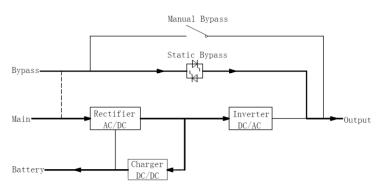


Abbildung 1-8 Betriebsdiagramm des ECO-Modus

Beim Übergang vom ECO-Modus in den Batterie-Modus gibt es eine kurze Unterbrechungszeit (weniger als 10ms), es muss sichergestellt sein, dass die Unterbrechung keine Auswirkungen auf die Lasten hat.

1.2.2.6 Frequenzumrichter-Modus

Durch Einstellen der USV auf "Frequenzumrichter-Modus" bietet die USV einen stabilen Ausgang mit fester Frequenz (50 oder 60 Hz) und der statische Bypass-Schalter ist nicht verfügbar.

2. Installation

2.1 Standort

Da jeder Standort/jedes Land seine eigenen Anforderungen hat, dienen die Installationsanweisungen in diesem Abschnitt als Leitfaden für die allgemeinen Verfahren und Praktiken, die vom Installateur befolgt werden sollten.

2.1.1 Installationsumgebung

Die USV ist für die Installation in Innenräumen vorgesehen und verwendet eine Zwangskonvektionskühlung durch interne Lüfter. Bitte stellen Sie sicher, dass genügend Platz für die Belüftung und Kühlung der USV vorhanden ist.

Halten Sie die USV von Wasser, Hitze und brennbaren und explosiven korrosiven Materialien fern. Vermeiden Sie die Installation der USV in der Umgebung mit direktem Sonnenlicht, Staub, flüchtigen Gasen, korrosiven Materialien und hohem Salzgehalt.

Vermeiden Sie die Installation der USV in der Umgebung mit leitfähigem Schmutz.

Die beste Betriebsumgebungstemperatur für Batterien beträgt 20-25°C. Ein Betrieb über 25°C verringert die Batterielebensdauer und ein Betrieb unter 20°C verringert die Batteriekapazität.

Die Batterie erzeugt während des Ladevorgangs eine geringe Menge an Wasserstoff und Sauerstoff; Stellen Sie sicher, dass das Frischluftvolumen der Batterieinstallationsumgebung die Anforderungen von EN50272-2001 und EN-IEC62485-2 erfüllen muss.

Bei Verwendung externer Batterien müssen die Batterieschutzschalter (bzw. Sicherungen) möglichst nahe an den Batterien montiert werden und die Anschlusskabel möglichst kurz sein.

2.1.2 Standortauswahl

Stellen Sie sicher, dass der Boden oder die Installationsplattform das Gewicht des USV-Schranks, der Batterien und der Batteriegestelle tragen kann.

Keine Vibration und weniger als 5 Grad Neigung horizontal.

Das Gerät sollte in einem Raum gelagert werden, um es vor übermäßiger Feuchtigkeit und Wärmequellen zu schützen.

Die Batterie muss an einem trockenen und kühlen Ort mit guter Belüftung gelagert werden. Die am besten geeignete Lagertemperatur beträgt 5°C bis 25°C.

2.1.3 Größe und Gewicht

Stellen Sie sicher, dass genügend Platz für die Aufstellung der USV vorhanden ist. Der für den USV-Schrank reservierte Raum ist in Abbildung 2-1 dargestellt.

Achtung

Stellen Sie sicher, dass an der Vorderseite des Schranks mindestens 0,8m frei sind, um den Zugang zur USV zu erleichtern, und dass hinter dem Schrank mindestens 0,5 m frei sind, damit die Belüftung gewährleistet ist. Siehe Abbildung 2-1. Der für den Schrank reservierte Raum ist in Abbildung 2-1 dargestellt.

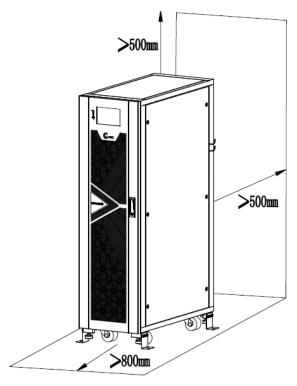
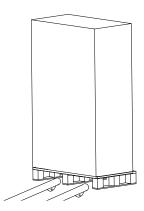


Abbildung 2-1 Für den Schrank reservierter Platz (Einheit: mm)

Die Abmessungen und das Gewicht des USV-Schranks sind in Tabelle 2-1 aufgeführt

Tabele 1.1 Gewicht für den Schrank

Vanfiguration	Abmessung (B*T*H)	Gewicht	MaximalGewicht	
Konfiguration	mm	Ohne Batterien	Batterien enthalten	
10kVA	10kVA 380*840*1400		424kg 3 Saitenbatterien	
15kVA 380*840*1400		100kg 424kg 3 Saitenbat		
20kVA 380*840*1400		100kg	424kg 3 Saitenbatterien	
30kVA	500*940*1400	140kg	572kg 4 Saitenbatterien	
40kVA	500*940*1400	140kg	572kg 4 Saitenbatterien	



2.2 Entladen und Auspacken

2.2.1 Bewegen und Auspacken des Schrankes

Die Schritte zum Verschieben und Entpacken des Schranks sind wie folgt:

- 1. Überprüfen Sie, ob die Verpackung beschädigt ist. (Falls vorhanden, Kontakt zum Spediteur)
- 2. Transportieren Sie das Gerät mit einem Gabelstapler zum vorgesehenen Standort wie in Abbildung 2-2 gezeigt.

Abbildung 2-2 Transport zum vorgesehenen Standort

3. Packen Sie das Paket wie in Abbildung 2-3 gezeigt aus.

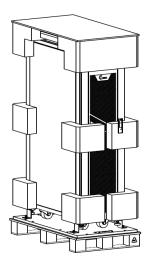


Abbildung 2-3 Kiste demontieren

4. Entfernen Sie den Schutzschaum um den Schrank herum, wie in Abbildung 2-4 gezeigt.

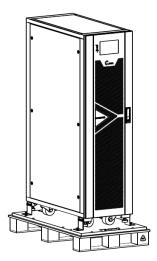


Abbildung 2-4 Entfernen Sie den Schutzschaum

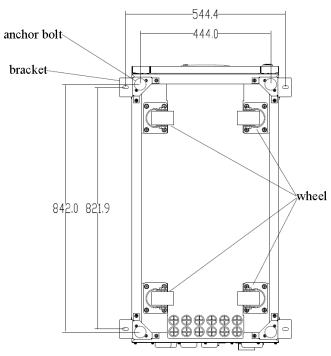
- 5. Die USV prüfen.
 - (a) Sichtprüfung, ob während des Transports Schäden an USV auftreten. Falls vorhanden, kontaktieren Sie den Beförderer.
 - (b) Überprüfen Sie die USV mit der Liste der Waren. Wenn Artikel nicht in der Liste enthalten sind, wenden Sie sich an unser Unternehmen oder die lokale Niederlassung.
- 6. Demontieren Sie den Bolzen, der den Schrank und die Holzpalette nach der Demontage verbindet.
- 7. Bewegen Sie das Gehäuse in die Installationsposition.

Achtung

Seien Sie vorsichtig beim Entfernen, um Kratzer am Gerät zu vermeiden.

Achtung

Die Abfallmaterialien des Auspackens sollten entsorgt werden, um den Anforderungen des Umweltschutzes gerecht zu werden.


2.3 Positionierung

2.3.1 Positionierung des Schrankes

Der USV-Schrank kann auf zwei Arten gehalten werden: Eine besteht darin, sich vorübergehend von den vier Rädern an der Unterseite abzustützen, wodurch die Position des Schranks bequem eingestellt werden kann. Die andere ist durch Ankerbolzen um den Schrank nach dem Einstellen der Position des Schranks dauerhaft zu stützen. Die Trägerstruktur ist in Abbildung 2-5 dargestellt.

(a) 10-20kVA (Unten, Einheit: mm)

(b) 30kVA und 40kVA (Unten, Einheit: mm)

Abbildung 2-4 Trägerstruktur (Ansicht von unten)

Die Schritte zum Positionieren des Schrankes sind wie folgt:

- 1. Stellen Sie sicher, dass die Trägerstruktur in gutem Zustand ist und der Montageboden glatt und stark ist.
- 2. Ziehen Sie die Ankerbolzen zurück, indem Sie sie mit einem Schraubenschlüssel gegen den Uhrzeigersinn drehen, der Schrank wird dann von den vier Rädern getragen.
- 3. Stellen Sie das Gehäuse an den Stützrädern in die richtige Position.
- 4. Setzen Sie die Ankerbolzen durch Drehen im Uhrzeigersinn mit einem Schraubenschlüssel ab, der Schrank wird dann von den vier Ankerbolzen gestützt.
- 5. Stellen Sie sicher, dass sich die vier Ankerbolzen in der gleichen Höhe befinden und der Schrank fest und unbeweglich ist.

Achtung

Zusätzliche Ausrüstung wird benötigt, wenn der Montageboden nicht fest genug ist, um das Gehäuse zu stützen, wodurch das Gewicht auf eine größere Fläche verteilt wird. Bedecken Sie zum Beispiel den Boden mit einer Eisenplatte oder erhöhen Sie die Auflagefläche der Ankerbolzen.

2.4 Batterie

Die USV kann interne Batterien enthalten, verfügt aber auch über externe Batterieanschlussklemmen für mehr Auswahl.

Drei Anschlüsse (positiv, neutral, negativ) werden von der Batteriegruppe gezogen und an das USV-System angeschlossen. Die neutrale Leitung wird von der Mitte der Batterien in Reihe gezogen (Siehe Abbildung 2-5)

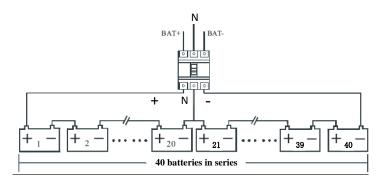


Abbildung 2-5 Batterieanschlussplan

Gefahr

Die Batterieklemmenspannung beträgt mehr als 200 VDC. Bitte beachten Sie die Sicherheitshinweise, um Stromschläge zu vermeiden.

Stellen Sie sicher, dass die positive, negative, neutrale Elektrode korrekt von den Anschlüssen der Batterieeinheit zum Unterbrecher und vom Unterbrecher zum USV-System verbunden ist.

2.5 Kabeleinführung

Die Kabeleinführung befindet sich an der Unterseite der Rückseite.

Die Kabeleinführung ist in Abbildung 2-6 dargestellt.

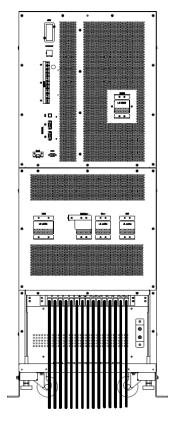


Abbildung 2-6 Kabeleinführung

2.6 Stromkabel

2.6.1 Spezifikationen

Die empfohlenen Stromkabelgrößen finden Sie in Tabelle 2-2.

Tabelle 2 Empfohlene Größen für Leistungskabel

	Inhalt	10kVA	15kVA	20kVA	30kVA	40kVA	
	Haupteingangsstr	om (A)	18	28	35	55	70
Haupteingang	Kabelquerschnitt (mm²)	Phasen N	6	6	10	10	16
	Ausgangsstron	n (A)	15	23	30	45	60
Ausgang	Kabelquerschnitt (mm²)	Phasen N	6	6	10	10	16
	Bypass-Eingangsstrom (A)		15	23	30	45	60
Bypass-Eingang (Optional)	Kabelquerschnitt (mm²)	Phasen N	6	6	10	10	16
	Batterie Eingangss	trom (A)	20	30	40	60	80
Batterieeingang	Kabelquerschnitt (mm²)	+/-/N	6	10	16	16	25
PE	Kabelquerschnitt (mm²)	PE	6	10	10	10	16

Hinweis

Der empfohlene Kabelquerschnitt für Stromkabel gilt nur für die unten beschriebenen Situationen:

- Umgebungstemperatur: < 30°C.
- Der Wechselstromverlust beträgt weniger als 3%, der Gleichstromverlust beträgt weniger als 1%, die Länge der Wechselstromkabel sollte nicht länger als 50 Meter sein und die Länge der Gleichstromkabel sollte nicht länger als 30 Meter sein.
- Die in der Tabelle aufgeführten Ströme beziehen sich auf das 380-V-System (Leitung-zu-Leitung-Spannung). Für das 400-V-System beträgt der Strom das 0,95-fache und für das 415-V-System das 0,92-fache.
- Die Größe der neutralen Leitungen sollte das 1,5-1,7-fache des oben aufgeführten Wertes betragen, wenn die vorherrschende Last nicht linear ist.

2.6.2 Spezifikationen für die Netzkabelklemme

Die Spezifikationen für den Stromkabelanschluss sind in Tabelle 2-3 aufgeführt.

Tabelle 2-3 Anforderungen an die Leistungsklemme

Schnittstelle	Anschluss	Schraube	Anschluss Platz	Drehmoment
Netzeingang				
Bypass-Eingang	Waland and order	10 + 15kVA = M5	10 + 15kVA = 10,4mm	
Batterieeingang	Kabel geknickt OT-Klemme	20 + 30kVA = M6	20 + 30kVA = 13mm	4,9 Nm
Ausgang		40kVA = M8	40kVA = 23mm	
PE				

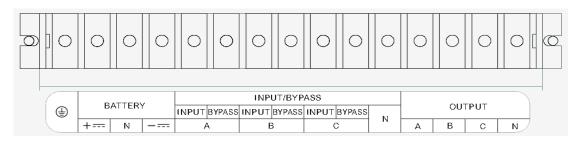
2.6.3 Leistungsschalter

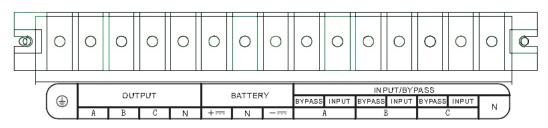
Die empfohlenen externen Schutzschalter (LS) für das System sind in Tabelle 2-4 aufgeführt.

Tabele 2-4 Empfohlene CB

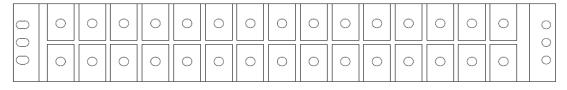
Installierte Position	10kVA	15kVA	20kVA	30kVA	40kVA
Eingang CB				80A/3P	
Bypass CB	32A/3P	40A/3P	C2A /2D	63A/3P	100A/3P
Ausgang CB			63A/3P		
Wartungs-CB					
Batterie CB	32A/3P	40A, 250Vdc	63A, 250Vdc	100A, 250Vdc	125A, 250Vdc

Achtung


Der CB mit RCD (Fehlerstrom-Schutzeinrichtung) wird für das System nicht empfohlen.


2.6.4 Verbindung Stromkabel

Die Schritte zum Anschließen von Stromkabeln sind wie folgt:


- Stellen Sie sicher, dass alle externen Eingangsverteilungsschalter der USV vollständig geöffnet sind und der interne Wartungs-Bypass-Schalter der USV und der interne Batterieschalter geöffnet sind. Bringen Sie die erforderlichen Warnschilder an diesen Schaltern an, um unbefugten Betrieb zu verhindern.
- 2. Die Anschlussklemmen befinden sich auf der Rückseite der USV, entfernen Sie die Metallschutzabdeckung, die Klemmen sind in Abbildung 2-7 dargestellt

(a) Anschlussklemmen für 10kVA und 15kVA

(b) Anschlussklemmen für 20kVA

-					BATTERY			INPUT/BYPASS						
		00	TPUT					INPUT	BYPASS	INPUT	BYPASS	INPUT	BYPASS	N
(A	В	С	N	+	N		,	Д	-	3		С	

(c) Anschlussklemmen für 30kVA und 40kVA

Abbildung 2-7 Kabelanschlussklemmen (Phasenbezeichnung A-B-C entspricht L1-L2-L3 oder R-S-T)

- 3. Schließen Sie das Schutzerdungskabel an die Schutzerdungsklemme (PE) an.
- 4. Schließen Sie die AC-Eingangskabel an die Haupteingangsklemme und die AC-Ausgangskabel an die Ausgangsklemme an.
- 5. Schließen Sie externe Batteriekabel an den Batteriepol an.
- 6. Stellen Sie sicher, dass keine Fehler vorliegen und bringen Sie alle Schutzabdeckungen wieder an.

www.gtec-power.eu

Achtung

Die in diesem Abschnitt beschriebenen Vorgänge müssen von autorisierten Elektrikern oder qualifiziertem technischem Personal durchgeführt werden. Wenn Sie Schwierigkeiten haben, wenden Sie sich an den Hersteller oder die Agentur.

Achtung

Stellen Sie nach dem Anschluss die Schutzabdeckung aus Kunststoff wieder her, bevor Sie die USV mit Strom versorgen, die elektrischen Maßnahmen zur Aktivierungssicherheit.

Warnung

- Ziehen Sie die Anschlussklemmen mit einem ausreichenden Drehmoment fest, siehe Tabelle 2-3, und achten Sie auf die richtige Phasendrehung.
- Stellen Sie vor dem Anschließen sicher, dass der Eingangsschalter und die Stromversorgung ausgeschaltet sind. Bringen Sie Warnschilder an, um andere Bediener darauf hinzuweisen, keine Arbeiten durchzuführen
- Das Erdungskabel und das Nullleiterkabel müssen gemäß den örtlichen und nationalen Vorschriften angeschlossen werden.
- Wenn die Kabellöcher nicht von Kabeln durchzogen sind, sollten sie mit dem Lochstopfen gefüllt werden.

2.7 Steuer- und Kommunikationskabel

USV ist mit RS232, RS485-Schnittstellen konfiguriert, und Potenzialfreier Kontakt USB- und SNMP-Karte sind optional, wie in Abbildung 2-8 gezeigt.

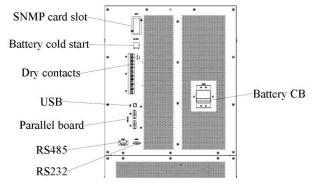


Abbildung 2-8 Potentialfreier Kontakt & Kommunikationsschnittstelle

2.7.1 Schnittstelle für Trockenkontakte

Die USV (Unterbrechungsfreie Stromversorgung) verfügt über Schnittstellen mit Trockenkontakten von J2 bis J10. Diese sind in Messkontakte (J2 und J3), Eingangskontakte (J4, J5, J6-2 und J7) und Ausgangskontakte (J6-1, J8, J9 und J10) unterteilt. Die Eingangskontakte ermöglichen die Durchführung bestimmter Befehle, während die Ausgangskontakte bestimmte Signale bereitstellen. Alle Ein- und Ausgangskontakte können für verschiedene Funktionen programmiert werden.

Die standardmäßigen Funktionen dieser Schnittstellen sind in Tabelle 2-5 aufgeführt.

Tabelle 2-5 Standardfunktionen der Schnittstellen

Schnittstell e	Name	Funktion
J2-1	TEMP_BAT	Messung der Batterietemperatur
J2-2	TEMP_COM	Messung der Batterietemperatur
J3-1	ENV_TEMP	Messung der Umgebungstemperatur
J3-2	TEMP_COM	Messung der Umgebungstemperatur
J4-1	REMOTE_EPO_NC	Normalerweise geschlossener EPO-Kontakt (geschlossen zwischen J4-1 und J4-2)
J4-2	+24V_DRY	Interne Stromversorgung mit +24V
J4-3	+24V_DRY	Interne Stromversorgung mit +24V
14.4	REMOTE_EPO_NO	Normalerweise geöffneter EPO-Kontakt (offen zwischen
J4-4		J4-3 und J4-4)
J5-1	+24V_DRY	Interne Stromversorgung mit +24V
J5-2	GEN_CONNECTED	Normalerweise geöffneter Stromgeneratorkontakt
J5-3	GND_DRY	Nicht verwenden . Gemeinsamer Punkt der +24V-Stromversorgung.
J6-1	Unità BCB	Ausgang +24V / 20 mA zur Versorgung einer externen
10-1	Unita BCB	Spule eines MCB (oder MCCB).
J6-2	BCB_Status	Eingang zur Identifizierung des "ausgelösten" Zustands
30-2	status	eines MCB (oder MCCB).
J7-1	GND DRY	Gemeinsamer Punkt der internen Stromversorgung mit
J, 1	0.14D_D.K.1	+24V
J7-2	BCB_Online	Eingang zur Identifizierung des "offen/geschlossen"-
J/-Z	BCB_Online	Zustands eines MCB (oder MCCB).

J8-1	BAT_LOW_ALARM_NC	Kontakt für entladen Batteriestand; normalerweise			
		geschlossen Kontakt.			
J8-2	DAT LOW ALABAA NO	Kontakt für niedrigen Batteriestand; normalerweise			
J6-2	BAT_LOW_ALARM_NO	geöffnet.			
J8-3	BAT_LOW_ALARM_COMM	Gemeinsamer Punkt für J8-1 und J8-2			
10.1	CENEDAL ALADAA NC	Kontakt für das Vorhandensein eines allgemeinen Alarms;			
J9-1	GENERAL_ALARM_NC	normalerweise geschlossen.			
10.0	GENERAL_ALARM_NO	Kontakt für das Vorhandensein eines allgemeinen Alarms;			
J9-2		normalerweise geöffnet.			
J9-3	GENERAL_ALARM_COMM	Gemeinsamer Punkt für J9-1 und J9-2			
J10-1	UTILITY_FAIL_NC	Kontakt für einen USV-Fehler; normalerweise geschlossen.			
110.3	LITHITY FAIL NO	Wantalat Cina along 1100/ Ealahan and an along in a silfing t			
J10-2	UTILITY_FAIL_NO	Kontakt für einen USV-Fehler; normalerweise geöffnet.			
J10-3	UTILITY_FAIL_COMM	Gemeinsamer Punkt für J10-1 und J10-2			

Hinweis: Die Eingangsschnittstellen mit Trockenkontakten J5-2, J6-2 und J7 können über unsere Software MTR programmiert werden. Die programmierbaren Ereignisse sind in Tabelle 2-6 aufgeführt.

Tabelle 2-6 Programmierbare Eingangsereignisse

NR.	Ereignis	Beschreibung
1	Generator-Eingang	Der Eingang wird vom Generator versorgt
2	Hauptschalter geschlossen	Der Haupt-Eingangsschalter ist geschlossen
3	Stummgeschaltet	Stummgeschaltet
4	BCB-Status	Status des BCB, geschlossen oder geöffnet
5	Umschalten auf	Die USV wechselt in den Wechselrichtermodus
6	BCB Online	Aktiviert die Statusüberwachung des BCB
7	Umschalten auf Bypass	Die USV wechselt in den Bypassmodus
8	Fehler löschen	Überprüft den Fehler oder die Alarminformationen
9	Batterieüüerlastung	Die Batterien sind überlastet
10	Batterie entlädt sich	Die Batterien entladen sich
11	SchnellladungStoppen einer	Stoppen der Schnellladung

Hinweis: Die Ausgangsschnittstellen mit Trockenkontakten J6-1, J8, J9 und J10 können über unsere Software MTR programmiert werden. Die programmierbaren Ereignisse sind in Tabelle 2-7 aufgeführt.

Tabelle 2-7 Programmierbare Ausgangsereignisse

NR.	Ereignis	Beschreibung
1	BCB-Auslösung	BCB-Schutzauslösung
2	Bypass-Rückspeiseschutz-	Schutzschalterauslösung für Rückspeisung im Bypass
3	Überlastung	Der Ausgang ist überlastet
4	Allgemeiner Alarm	Allgemeine Alarme
5	Ausgang verloren	Keine Ausgangsspannung
6	Batteriemodus	Die USV arbeitet im Batteriemodus
7	Netzausfall	Das Stromnetz ist ausgefallen
8	Wechselrichter aktiv	Die USV arbeitet im Wechselrichtermodus
9	Batterieladung	Die Batterien werden geladen
10	Normalmodus	Die USV arbeitet im Normalmodus
11	Schwache Batteriespannung	Die Batteriespannung ist schwach
12	Bypass aktiv	Die USV arbeitet im Bypassmodus
13	Batterieentladung	Die Batterien entladen sich
14	Gleichrichter bereit	Der Gleichrichter wird gestartet
15	Schnellladung der Batterie	Die Batterien werden schnell geladen

Die Funktionsweise der standardmäßigen Ein- und Ausgangsfunktionen wird im Folgenden erläutert.

MESSUNGEN

Schnittstelle zur Erfassung der Batterie- und Umgebungstemperatur

Die Eingänge J2 und J3 können jeweils die Temperatur der Batterien und der Umgebung erfassen. Die Batterietemperatur wird verwendet, um die Batteriespannung bei der Ladung zu kompensieren. Es kann eingestellt werden, wie viel Spannung pro °C kompensiert werden soll (der Standardwert ist -3 mV/°C). Die Umgebungstemperatur dient zur Überwachung der lokalen Umgebungstemperatur.

Die Signale der Messungen sind in **Abbildung 2-22** dargestellt, während die Beschreibung der Schnittstelle in **Tabelle 2-8** aufgeführt ist.

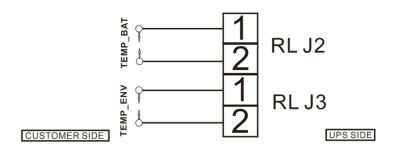


Abbildung 2-22 J2 und J3 zur Temperaturerkennung

Tabelle 2-8

Schnittstel le	Name	Funktion
J2-1	TEMP_BAT	Erfassung der Batterietemperatur
J2-2	TEMP_COM	Gemeinsamer Anschluss für Batterietemperatur
J3-1	ENV_TEMP	Erfassung der Umgebungstemperatur
J3-2	TEMP_COM	Gemeinsamer Anschluss für Umgebungstemperatur

Hinw

Für die Temperaturerfassung wird ein spezieller Temperatursensor benötigt, der optional ist. Bitte wenden Sie sich vor der Bestellung an den Hersteller oder den lokalen Vertreter, um die Verfügbarkeit zu klären.

EINGANGSKONTAKTE

Eingangskontakte für die Steuerung des Fern-EPO

J4 ist der Eingangsanschluss für den Fern-EPO (Emergency Power Off).

Es gibt zwei Anschlussmöglichkeiten: Verbindung mit dem normalerweise geschlossenen Kontakt (J4 1-2) oder mit dem normalerweise offenen Kontakt (J4 3-4). Während des normalen Betriebs bleiben diese Kontakte in ihrer Standardposition. Wenn der EPO aktiviert wird, wechselt der Kontakt (J4 1-2) in die offene Position, und der EPO-Kontakt (J4 3-4) wechselt in die geschlossene Position.

Das Anschlussdiagramm wird in **Abbildung 2-23** dargestellt, und die Beschreibung des Anschlusses ist in **Tabelle 2-9** aufgeführt.

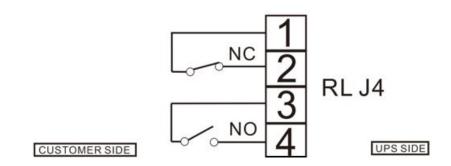


Abb.2-23 Diagramm des Eingangsanschlusses für Remote EPO

Tabelle 2-9

Anschluss	Name	Funktion
J4-1	REMOTE_EPO_NC	Aktivierung des EPO, wenn der Kontakt geöffnet wird
J4-2	+24V_DRY	+24V
J4-3	+24V_DRY	+24V
J4-4	REMOTE_EPO_NO	Aktivierung des EPO, wenn der Kontakt geschlossen
		wird

Hinweis

J4-1 und J4-2 müssen während des normalen Betriebs verbunden sein.

J4-2 und J4-3 haben eine interne Stromversorgung von +24V.

Generatoreingang potentialfreier Kontakt Eingangskontakt für den Generator

J5 ist der Eingangsanschluss für den Generator.

Der Kontakt J5 1-2 ist normalerweise offen, wenn der Generator nicht in Betrieb ist. Sobald der Generator gestartet wird, schließt sich der Kontakt J5 1-2, und die USV erkennt, dass der Generator aktiv ist und die USV mit Strom versorgt.

Das Anschlussdiagramm ist in Abbildung 2-24 dargestellt, und die Beschreibung des Anschlusses ist in Tabelle 2-10 aufgeführt.

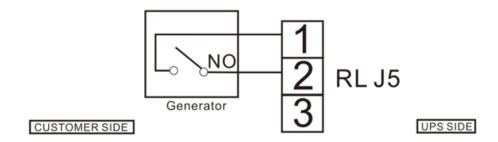


Abb.2-24 Anschlussdiagramm des Generatoreingangs

Tabelle 2-10

Anschluss	Name	Funktion
J5-1	+24V_DRY	Interne Stromversorgung +24V
J5-2	GEN_CONNECTED	Verbindungsstatus des Generators
J5-3	CND INTERNAL DRY	Nicht verwenden. Gemeinsamer Punkt der internen
	GND_INTERNAL_DRY	+24V-Stromversorgung

Kontakte des Batterie-Schutzschalters (BCB)

Die Standardfunktionen von **J6** und **J7** sind die Schnittstellen für die Auslösung des BCB und den Status "geöffnet/geschlossen" des BCB.

BCB-Auslösung: Der Anschluss der Auslösespule des BCB (Anschlüsse J6-1 und J7-1) liefert ein Signal von **24V und 20 mA**, um den externen Batterieschutzschalter mithilfe einer Stromstoßspule auszulösen. Dieser Befehl wird aktiviert, wenn der EPO-Befehl aktiviert wird und/oder wenn das EOD (Ende der Entladung) auftritt.

Kontakt für den Zustand "Ausgelöst" des BCB: Der Hilfskontakt "Ausgelöst" des BCB (normalerweise offener Kontakt) ist zwischen den Klemmen J6-2 und J7-1 anzuschließen. Der Kontakt wird normalerweise geschlossen, wenn der BCB ausgelöst wird.

Hinweis: Um diese Funktion zu nutzen, ist es erforderlich, J7-1 mit J7-2 zu überbrücken.

Kontakt für den Zustand "Position" des BCB: Der Hilfskontakt "Position" des BCB (normalerweise offener Kontakt) ist zwischen den Klemmen J7-1 und J7-2 anzuschließen. Der Kontakt wird normalerweise geschlossen, wenn sich der Zustand des BCB ändert.

Das Anschlussdiagramm ist in Abbildung 2-25 und die Anschlussbeschreibung in Tabelle 2-11 dargestellt.

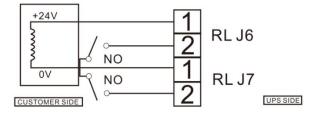


Abbildung 2-25 BCB Schnittstelle

Tabelle 2-11

Anschluss	Name	Funktion			
J6-1	BCB_DRIV	Liefert ein Steuersignal von "+24V und 20mA".			
J6-2	BCB_Status	Kontaktstatus "ausgelöst" des BCB; verbinden mit der normalerweise offenen Kontakt des BCB.			
J7-1	GND_DRY	Erdung für +24V.			
J7-2	BCB_ON	Kontaktstatus "Position" des BCB; verbinden mit dem normalerweise offenen Kontakt des BCB.			

Hinweis Es können auch MCBs (Miniature Circuit Breaker) oder MCCBs (Molded Case Circuit Breaker) als Eingangsschalter verwendet werden (z. B. für den Rückspeiseschutz).

Ausgangskontakte

Kontakt für niedrigen Batteriestand

Dies ist ein Wechslerkontakt mit der Verbindung zwischen J8 1-3 (normalerweise geschlossen) und J8 2-3 (normalerweise offen). Er dient dazu, zu warnen, wenn die Batteriespannung während der Entladephase unter einen eingestellten Wert fällt.

Bei der Aktivierung des Alarms wird der Kontakt J8 1-3 zu NO (normalerweise offen), und der Kontakt J8 2-3 wird zu NC (normalerweise geschlossen).

Das Anschlussdiagramm ist in Abbildung 2-26 dargestellt, und die Beschreibung der Schnittstelle ist in Tabelle 2-12 aufgeführt.

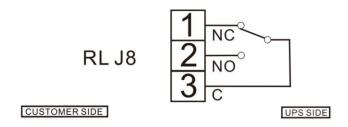


Abbildung 2-26: Anschlussdiagramm für den Ausgangskontakt bei niedrigem Batteriestand

Tabelle 2-12

Anschluss	Name	Funktion					
J8-1	BAT LOW ALARM NC	Kontakt für niedrigen Batteriestand NC					
30 1		(normalerweise geschlossen); wird während des Alarms geöffnet.					
		Kontakt für niedrigen Batteriestand NO					
J8-2	BAT_LOW_ALARM_NO	(normalerweise offen); wird während des Alarms geschlossen.					
J8-3	BAT_LOW_ALARM_COMM	Gemeinsamer Anschluss.					

Kontakt für allgemeinen Alarm

Dies ist ein Wechslerkontakt mit der Verbindung zwischen J9 1-3 (normalerweise geschlossen) und J9 2-3 (normalerweise offen). Er dient dazu, bei einem allgemeinen Alarm einen potentialfreien Kontakt bereitzustellen.

Bei der Aktivierung des Alarms wird der Kontakt J9 1-3 zu NO (normalerweise offen), und der Kontakt J9 2-3 wird zu NC (normalerweise geschlossen).

Das Anschlussdiagramm ist in Abbildung 2-27 dargestellt, und die Beschreibung der Schnittstelle ist in Tabelle 2-13 aufgeführt.

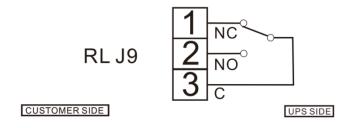


Abbildung 2-27: Anschlussdiagramm für den Ausgangskontakt bei allgemeinem Alarm

Tabelle 2-13

Anschluss	Name	Funktion		
J9-1	GENERAL_ALARM_NC	Eingebautes Warnrelais NC (normalerweise		
J9-1		geschlossen); wird während des Alarms geöffnet.		
J9-2	GENERAL_ALARM_NO	Warnrelais NO (normalerweise offen); wird während		
J9-Z		des Alarms geschlossen.		
J9-3	GENERAL_ALARM_COMM	Gemeinsamer Anschluss.		

Schnittstelle für USV-Fehlerkontakt

Dies ist ein Wechslerkontakt mit der Verbindung zwischen J10 1-3 (normalerweise geschlossen) und J10 2-3 (normalerweise offen). Er dient dazu, bei einem USV-Fehler einen Trockenkontakt bereitzustellen. Bei der Aktivierung des Alarms wird der Kontakt J10 1-3 zu NO (normalerweise offen), und der Kontakt J10 2-3 wird zu NC (normalerweise geschlossen).

Das Anschlussdiagramm ist in Abbildung 2-28 dargestellt, und die Beschreibung der Schnittstelle ist in Tabelle 2-13 aufgeführt.

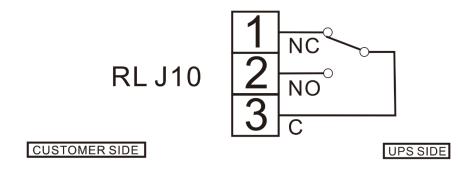


Abbildung 2-28 Anschlussdiagramm für den Ausgangskontakt bei USV-Fehler

Tabelle 2-13

Anschluss	Name Funktion				
110.1	LITHITY FAIL NC	Warnrelais für Netzfehler NC (normalerweise			
J10-1	UTILITY_FAIL_NC	geschlossen); wird während des Alarms geöffnet.			
110.2	LITUITY FAIL NO	Warnrelais für Netzfehler NO (normalerweise offen);			
J10-2	UTILITY_FAIL_NO	wird während des Alarms geschlossen.			
J10-3 UTILITY_FAIL_COMM Gemeinsamer Anschluss		Gemeinsamer Anschluss.			

2.7.2 Kommunikationsschnittstelle

RS232-, RS485- und USB-Ports können serielle Daten bereitstellen, die für die Inbetriebnahme und Wartung durch autorisierte Techniker oder für die Vernetzung oder ein integriertes Überwachungssystem im Serviceraum verwendet werden können.

SNMP wird vor Ort zur Kommunikation verwendet (Optional).

3. Kontroll- und LCD-Anzeigefeld

3.1 Einleitung

Dieses Kapitel enthält eine detaillierte Einführung in die Funktionen und Bedieneranweisungen des Bedien- und Anzeigefelds und bietet Informationen zur LCD-Anzeige, detaillierte Menüinformationen, Informationen zu Eingabeaufforderungsfenstern und USV-Alarminformationen.

3.2 LCD Bildschirm

Nach dem Start des Überwachungssystems geht das System nach dem Begrüßungsfenster auf die Homepage. Die Startseite ist in Abbildung 3-1 dargestellt.

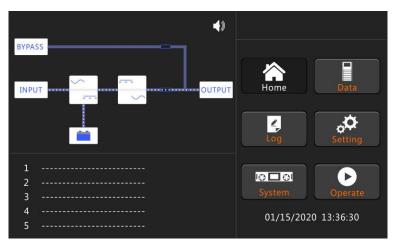


Abb.3 -1 Startseite

Die Startseite besteht aus der Statusleiste, Warninformationen und dem Hauptmenü.

Statusleiste

Die Statusleiste enthält das Modell des Produkts, die Kapazität, den Betriebsmodus und die Uhrzeit des Systems.

• Warninformationen

Zeigt die Warninformationen des Schranks an.

Hauptmenü

Das Hauptmenü umfasst Schrank, Daten, Einstellung, Protokoll, Bedienen und System. Benutzer können die USV bedienen und steuern und alle gemessenen Parameter über das Hauptmenü durchsuchen.

3.3 Hauptmenü

3.3.1 Daten

Tippen Sie auf das Symbol "Daten" und das System öffnet die Seite der Daten, wie in Abbildung 3-2 gezeigt.

Abbildung 3-2 Untermenü Schnittstelle der Datenseite

3.3.2 Protokoll

Berühren Sie das Symbol "Log" und das System öffnet die Oberfläche des Logs, wie in Abbildung 3-3 gezeigt. Das Protokoll wird in umgekehrter chronologischer Reihenfolge aufgelistet (d. h. das erste auf dem Bildschirm mit Nr. 1 ist das neueste), das die Ereignisse, Warnungen und Fehlerinformationen sowie das Datum und die Uhrzeit ihres Auftretens und Verschwindens anzeigt.

Abbildung 3-3 Seite Protokoll

Die folgende Tabelle 3-1 zeigt mögliche Ereignisse des USV-Verlaufsprotokolls.

Nr.	LCD-Display	mögliche Ereignisse des USV-Verlautsprotokolls. Erklärung		
1	Ladung an USV-Einstellung	Ladung an USV		
2	Ladung an Bypass-Einstellung	Ladung an Bypass		
3	Keine Ladung-Einstellung	Keine Ladung (Ausgangsleistung verloren)		
	Batterie Schnellladung-			
4	Einstellung	Ladegerät ist Schnellladebatteriespannung		
5	Batterie Erhaltungsladung- Einstellung	Ladegerät ist Erhaltungsbatteriespannung		
6	Batterie Entladung-Einstellung	Batterie entlädt		
7	Batterie verbunden-Einstellung	Batterie angeschlossen		
8	Batterie nicht angeschlossen- Einstellung	Batterie ist getrennt.		
9	Wartung CB geschlossen- Einstellung	Wartung CB ist geschlossen		
10	Wartung CB offen-Einstellung	Wartung CB ist offen		
11	EPO-Einstellung	Notausschaltung		
12	Modul An Weniger-Einstellung	Wechselrichterkapazität ist weniger eingestellt als Ladekapazität		
13	Modul An Weniger-Löschen	Alarm verschwindet		
14	Generator Eingang-Einstellung	Generator als AC Eingangsquelle		
15	Generator Eingang-Löschen	Alarm verschwindet		
16	Versorgung anormal-Einstellung	Versorgung (Netz) Anormal		
17	Versorgung anormal-Löschen	Alarm verschwindet		
18	Bypass Sequenz Fehler- Einstellung	Bypass Spannung Sequenz ist umgekehrt		
19	Bypass Sequenz Fehler-Löschen	Alarm verschwindet		
20	Bypass Volt Spannung-Einstellung	Bypass Spannung Anormal		
21	Bypass Volt anormal-Löschen	Alarm verschwindet		
22	Bypass-Modul Defekt-Einstellung	Bypass Defekt		
23	Bypass-Modul Defekt-Löschen	Alarm verschwindet		
24	Bypass Überlast-Einstellung	Bypass Überlast		
25	Bypass Überlast- Löschen	Alarm verschwindet		
26	Bypass Überlast Zeitüberschreitung-Einstellung	Bypass Überlast Zeitüberschreitung		
27	Bypass-Überlast Zeitüberschreitung-Löschen	Alarm verschwindet		
28	Bypass Frequenz Überspur- Einstellung	Bypass-Frequenztoleranz außerhalb der Toleranz		
29	Byp Freq Überspur-Löschen	Alarm verschwindet		
30	Überschreitet Tx Zeiten Lmt- Einstellung	Übertragungszeiten (von Wechselrichter zu Bypass) in 1 Stunde überschreitet die Grenze		

43

31	Überschreitet Tx Zeiten Lmt- Löschen	Alarm verschwindet		
32	Ausgang Kurzschluss-Einstellung	Ausgang kurzgeschlossener Schaltkreis		
33	Ausgang Kurzschluss-Löschen	Alarm verschwindet		
34	Batterie EOD-Einstellung	Batterie Ende der Entladung		
35	Batterie EOD-Löschen	Alarm verschwindet		
36	Batterie Test-Einstellung	Battery Test Start		
37	Battery Test OK-Einstellung	Battery Test OK		
38	Batterie Test Fehlgeschlagen- Einstellung	Battery Test Fehlgeschlagen		
39	Batterie Wartung-Einstellung	Batterie Wartung Test startet		
40	Batt Wartung OK-Einstellung	Batterie Wartung Test OK		
41	Batt Wartung Fehlgeschlagen- Einstellung	Batterie Wartung Test Fehlgeschlagen		
44	Gleichrichter Fehlgeschlagen- Einstellung	Gleichrichter Fehlgeschlagen		
45	Gleichrichter Fehlgeschlagen- Löschen	Alarm verschwindet		
46	Wechselrichter Fehlgeschlagen- Einstellung	Wechselrichter Fehlgeschlagen		
47	Wechselrichter Fehlgeschlagen- Löschen	Alarm verschwindet		
48	Gleichrichter Übertemperatur- Einstellung	Gleichrichter Übertemperatur		
49	Gleichrichter Übertemperatur- Löschen	Alarm verschwindet		
50	Lüfter Fehlgeschlagen-Einstellung	Lüfterdefekt		
51	Lüfterdefekt-Löschen	Alarm verschwindet		
52	Ausgang Überlast-Einstellung	Ausgang Überlast		
53	Ausgang Überlast- Löschen	Alarm verschwindet		
54	Wechselrichter-Überlast Zeitüberschreitung-Einstellung	Wechselrichter Überlast Zeitüberschreitung		
55	WECHSELR Überlast Zeitüberschreitung-Löschen	Alarm verschwindet		
56	Wechselrichter Übertemperatur- Einstellung	Wechselrichter Übertemperatur		
5/	Wechselrichter Übertemperatur- Löschen	Alarm verschwindet		
58	An USV verhindert-Einstellung	Systemübertragung vom Bypass zur Wechselrichter verhindert.		
59	An USV verhindert-Löschen	Alarm verschwindet		
60	Manuelle Übertragung Byp- Einstellung	Transfer zum manuellen Bypass		
	Manuelle Übertragung Byp-	Abbrechen zu Bypass manuell		
61	Einstellung	Abbrechen zu Bypass manuell		

		5			
63	Batterie Volt Niedrig-Einstellung	Batterie Volt Niedrig			
64	Batterie Volt Niedrig-Löschen	Alarm verschwindet			
65	Batterie Umkehr-Einstellung	Batteriepol (Plus- und Minuspol sind umgekehrt)			
66	Batterie Umkehr-Löschen	Alarm verschwindet			
67	Wechselrichter Schutz-Einstellung	Wechselrichter Schutz (Wechselrichter Spannung anormal oder Leistungsrückmeldung zu DC Bus)			
68	Wechselrichter Schutz- Löschen	Alarm verschwindet			
69	Eingang Neutral verloren- Einstellung	Eingang Netzspannung Neutral verloren			
70	Bypass Lüfter fehlgeschlagen- Einstellung	Bypass Lüfter fehlgeschlagen			
71	Bypass Lüfter fehlgeschlagen- Löschen	Alarm verschwindet			
72	Manuelles Abschalten-Einstellen	Manuelles Abschalten			
73	Manuelle Schnellladung- Einstellung	Manuelle Batterie-Schnellladung			
74	Manuelle Erhaltungsladung- Einstellung	Manuelle Batterie-Erhaltungsladung			
75	USV gesperrt-Einstellung	USV gesperrt			
76	Paralleles Kabel Fehler- Einstellung	Paralleles Kabel Fehler			
77	Paralleles Kabel Fehler-Löschen	Alarm verschwindet			
78	Lost N+X Redundant	Lost N+X Redundant			
79	N+X Überschüssiger Verlust- Löschen	Alarm verschwindet			
80	EOD Sys gesperrt	Das System wird nach der EOD-Entladung der Batterie nicht mit Strom versorgt (Ende der Entladung)			
81	Leistungsteilung fehlgeschlagen- Einstellung	Leistungsteilung ist nicht ausgeglichen			
82	Leistungsteilung fehlgeschlagen-	Alarm verschwindet			
83	Eingang Volt Erkennung fehlgeschlagen-Einstellung	Eingangsspannung ist anormal			
84	Eingang Volt Erkennung fehlgeschlagen-Löschen	Alarm verschwindet			
85	Batterie Volt Erkennung fehlgeschlagen-Einstellung	Batteriespannung ist anormal			
86	Batterie Volt Erkennung fehlgeschlagen-Löschen	Alarm verschwindet			
87	Ausgang Volt fehlgeschlagen- Einstellung	Ausgangsspannung ist anormal			
88	Ausgang Volt fehlgeschlagen- Löschen	Alarm verschwindet			
89	Ausgangstemp. Fehler-Einstellung	g Ausgangstemperatur ist anormal			
90	Ausgangstemp. Fehler-Löschen	Alarm verschwindet			
91	Eingangsstrom unausgeglichen- Einstellung	Eingangsstrom unausgeglichen			

92	Eingangsstrom unausgeglichen- Löschen	Alarm verschwindet			
93	DC Bus Überspannung-Einstellung	DC bus Überspannung			
94	DC Bus Überspannung-Löschen	Alarm verschwindet			
95	REC Softstart fehlgeschlagen- Einstellung	Gleichrichter Softstart fehlgeschlagen			
96	REC Softstart fehlgeschlagen- Löschen	Alarm verschwindet			
97	Relais verbunden fehlgeschlagen- Einstellung	Relais in Kurzschluss			
98	Relais verbunden fehlgeschlagen- Löschen	Alarm verschwindet			
99	Relais Kurzschluss-Einstellung	Relais kurzgeschlossen			
100	Relais Kurzschluss-Löschen	Alarm verschwindet			
101	No Inlet Temp. Sensor-Einstellung	Der Eingangstemperatursensor ist nicht richtig angeschlossen oder abnormal			
102	Kein Eingangstemperatursensor- Löschen	Alarm verschwindet			
103	Keine Ausgangstemp. Sensor- Einstellung	Der Ausgangstemperatursensor ist nicht angeschlossen oder abnormal			
104	Kein Ausgangstemperatursensor- Löschen	Alarm verschwindet			
105	Eingang Übertemperatur- Einstellung	Eingang Übertemperatur			
106	Eingang Übertemperatur- Löschen	Alarm verschwindet			

3.3.3 Einstellung

Berühren Sie das Symbol "Einstellung", das System öffnet die Seite der Einstellung, wie in Abbildung 3-4 gezeigt.

Abbildung 3-4 Untermenü Schnittstelle der Einstellseite

Die Untermenüs sind auf der Unterseite der Einstellseite aufgelistet. Benutzer können jede Einstellungsschnittstelle durch Berühren des entsprechenden Symbols eingeben. Die Untermenüs sind in Tabelle 3-2 detailliert beschrieben.

Table 3-2 Beschreibung jedes Untermenüs der Einstellung

Untermenü Name	Inhalt	Bedeutung		
Datum & Uhrzeit	Datumsformateinstellung	Drei Formate: (a) Jahr/Monat/Tag; (b) Monat/Datum/Jahr; (c) Datum/Monat/Jahr		
	Zeiteinstellung	Zeit einstellen		
	Aktuelle Sprache	Sprache in Verwendung		
Sprache	Sprachauswahl	Die Einstellung erfolgt unmittelbar nach dem Berühren des Sprachsymbols		
	Geräteadresse	Einstellen der Kommunikationsadresse		
сомм.	RS232-Protokollauswahl	SNT Protocol, Modbus Protocol, YD/T Protocol and Dwin (Nur für Werksnutzung)		
	Baudrate	Einstellen der Baudrate		
	Modbus-Modus	Modbus Einstellmodus: ASCII oder RTU		
	Einstellung der Ausgangsspannung	Einstellen der Ausgangsspannung		
NUTZER	Bypasssspannung begrenzt	Hoch Begrenzte Arbeitsspannung für Bypass, einstellbar: +10%, +15%, +20%, +25%		
NOTZER	Bypass-Spannung begrenzt	Runter Begrenzte Arbeitsspannung für Bypass, einstellbar: -10%, -15%, -20%, -30%, -40%		
	Bypass-Frequenz	Erlaubte Arbeitsfrequenz für Bypass		
	begrenzt	Einstellbar: +/-1Hz, +/-3Hz, +/-5Hz		
	Batterie-Nummer	Einstellen der Nummer der 12V-Batterie		
	Batteriekapazität	Einstellen Batteriekapazität in Ah		
BATTERIE	Erhaltungsladespannung / Zelle	Einstellen der Erhaltungsladespannung		
	Lade-Spannung / Zelle erhöhen	Einstellen der Schnellladespannung		
	Aktueller Prozentsatz der Ladung	Ladestrom (% der Nennleistung)		
	Systemmodus	Einstellen des Systemmodus: Einzeln, Parallel, Einzeln ECO, Parallel ECO, LBS, Parallel LBS		
	Parallel Nummer	Paralleles System USV Nummer		
SERVICE	Parallele ID	USV ID in parallelem System		
SERVICE	Anstiegsrate	Bypass-Frequenz Anstiegsrate		
	Synchronisationsfenster	Bypass-Frequenz Synchronisierungsfenster		
	System Autostartmodus	USV Startmodus nach Batterie EOD (Ende der		
	nach EOD	Entladung)		
RATE	Konfigurieren Sie den bewerteten Parameter	Nur für Werksnutzung		
	Anzeigemodus	Turm und Gestell-LCD-Anzeige (nur bei Nova USV Turm)		
KONFIGURIEREN	Hintergrundbeleuchtung Zeit	LCD-Hintergrundbeleuchtungszeit		
	Kontrast	LCD Kontrast		

3.3.4 System

Das Systeminformationsfenster zeigt Softwareversion, Busspannung, Ladespannung usw. an. Diese Menüs "Status & Alarm", "REC Code" und "INV Code" sind hilfreich, um die USV zu warten, wie in der folgenden Abbildung 3-5 dargestellt.

Abbildung 3-5 Untermenü Schnittstelle der Systemseite

3.3.5 Bedienen

Tippen Sie auf das Symbol "Operate", das System öffnet die Seite "Bedienen", wie in Abbildung 3-6 dargestellt.

Abbildung 3-6 Seite Bedienen

Das "Operate" -Menü enthält FUNKTIONSTASTE und TEST COMMAND. Der Inhalt wird im Detail unten beschrieben.

FUNKTIONSTASTE

- **ON/OFF** Manuelles EIN-/AUS-Schalten der USV
- **Defekt löschen** Löscht die Defekte.
- Übertragung zu Bypass / Esc Bypass, Übertragung zu Bypass-Modus / zurück zur Normalität
- Übertragung zu Wechselrichter Übertragung von Bypass-Modus zu Wechselrichter.
- Batterieverlaufsdaten zurücksetzen Setzen Sie die Batterieverlaufsdaten durch Berühren des Symbols zurück Die Geschichtendaten umfassen die Entladezeiten, die Lauftage und die Entladezeiten.

TESTBEFEHL

- Batterietest Das System wechselt in den Batteriemodus, um den Zustand der Batterie zu testen. Dies erfordert die Normalität des Bypasses und die Batteriekapazität beträgt nicht weniger als 25%.
- Batteriewartung Das System wechselt in den Batteriemodus. Diese Funktion dient zur Aufrechterhaltung der Batterie, was die Normalität des Bypasses und eine minimale Batteriekapazität von 25 % erfordert.
- Batterie-Starkladung
 Das System startet die Starkladung
- Batterie Erhaltungsladung
 Das System startet die Erhaltungsladung.
- Stopp Test
 Das System stoppt den Batterietest oder die Batteriewartung.

4. Betrieb

4.1 Inbetriebnahme der USV

4.1.1 Start im Normalmodus

Die USV muss nach Abschluss der Installation vom Inbetriebnehmer in Betrieb genommen werden. Die folgenden Schritte müssen befolgt werden:

- 1. Stellen Sie sicher, dass alle Leistungsschalter offen sind.
- 2. Schließen Sie den Ausgangsleistungsschalter (CB) und dann sowohl den Eingangs- als auch den Bypass-Leistungsschalter (CB) und das System beginnt mit der Initialisierung
- 3. Das LCD vor der USV leuchtet. Das System betritt die Startseite, wie in Abb.4-1 gezeigt.
- 4. Die LCD-Home-Schnittstelle zeigt an, dass der Systemgleichrichter funktioniert, die Anzeige blinkt, wie in Abbildung 4.1 gezeigt.

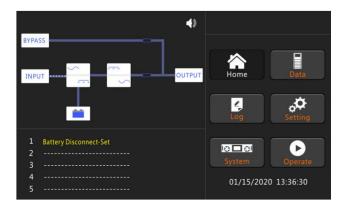


Abb.4-1 LCD des Gleichrichterstarts

5. Nach etwa 30 Sek. ist der Gleichrichterstart abgeschlossen, der statische Bypass-Schalter ist eingeschaltet und die Bypass-Anzeige blinkt, wie in Abbildung 4-2 gezeigt

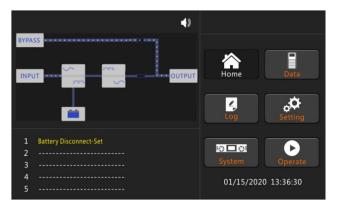


Abb.4-2 LCD des Bypassstarts

6. Nachdem der statische Bypass-Schalter eingeschaltet ist, startet der Wechselrichter und die Wechselrichter-Anzeigeleiste blinkt, wie in Abbildung 4-3 gezeigt.

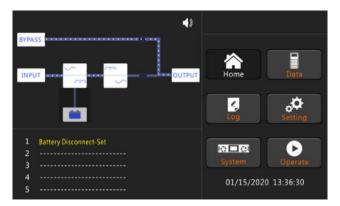


Abb.4-3 LCD des Wechselrichterstarts

7. Nach etwa 30 Sek., wenn der Wechselrichter normal läuft, schaltet die USV von Bypass auf Wechselrichter um, der Bypass-Anzeigebalken ist aus, der Lastanzeigebalken blinkt, wie in Abbildung 4-4 gezeigt.

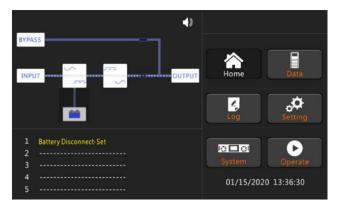


Abb.4-4 LCD des Wechselrichtermodus

 Schließen Sie den externen Batterieschalter, die Batterieanzeige blinkt und die USV lädt die Batterie. Die USV arbeitet im Normalmodus, wie in Abbildung 4-5 dargestellt

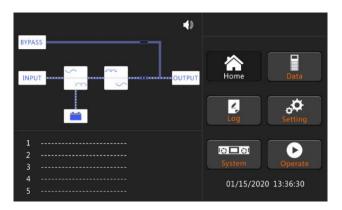


Abb.4-5 LCD des Normalmodus

Hinweis Benutzer können während des Startvorgangs Alarme durchsuchen, indem sie das Menü Protokoll überprüfen.

4.1.2 Starten von Batterie

Der Start aus der Batterie bezieht sich auf den Kaltstart der Batterie. Die Schritte für den Start sind Folgende:

- 1. Vergewissern Sie sich, dass die Batterie richtig angeschlossen ist; Schließen Sie die Batterietrennschalter.
- 2. Drücken Sie die rote Taste für den Batteriekaltstart, siehe Abb.4-6.

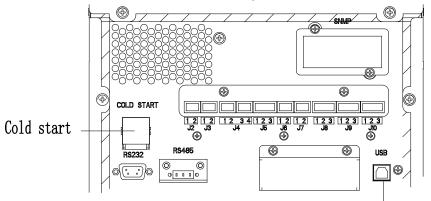


Abb.4-6 Position der Batteriekaltstarttaste

- 3. Danach startet das System gemäß den Schritten 3 in Abschnitt 4.1.1 und das System wechselt in 30 Sek. in den Batteriemodus..
- 4. Schließen Sie den Ausgangstrennschalter und den externen Ausgangstrennschalter, um die Last zu versorgen, und das System arbeitet im Batteriemodus.

4.2 Verfahren zum Wechseln zwischen Betriebsmodi

4.2.1 Umschalten der USV aus dem Normalmodus in den Batteriemodus

Die USV wird sofort nach dem Trennen des Leistungsschalters vom Netzgerät zum Batteriemodus übertragen. Warnung, wenn die Batterie nicht in Ordnung ist, besteht die Gefahr, dass die Last verloren geht/angehalten wird, um die Batterie zu testen, verwenden Sie den Batterietestbefehl

4.2.2 Umschalten der USV in den Bypass-Modus vom Normalmodus

Folgen Sie dem Pfad, indem Sie das Symbol "Bedienen" auswählen und dann "Übertragung zu Bypass" auswählen, um das System in den Bypass-Modus zu versetzen.

Warnung

Stellen Sie sicher, dass der Bypass normal ist, bevor Sie in den Bypass-Modus wechseln. Oder es besteht die Gefahr, dass sich die Last löst/anhält.

4.2.3 Umschalten der USV aus dem Bypass-Modus in den Normalmodus

Fall 1) Die USV wurde manuell auf Bypass umgeschaltet:

Wählen Sie "ESC-Bypass" aus. Es handelt sich um dasselbe Symbol, das für die Übertragung auf den Bypass verwendet wird. Sobald es jedoch verwendet wird, ändert sich der Name von "Übertragung auf Bypass" zu/von "ESC-Bypass".

Hinweis: Der Befehl "Transfer to Inverter" funktioniert in diesem Fall nicht. Wenn Sie ihn verwendet haben, bleiben die USVs im Bypass, aber das Symbol "esc bypass" ändert sich wieder in "Transfer to bypass", sodass Sie erneut "Transfer" drücken müssen to bypass" und drücken Sie "ESC Bypass" (gleiches Symbol).

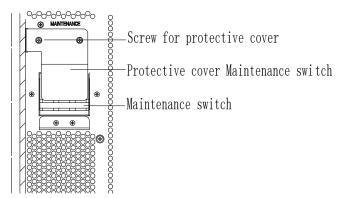
Fall 2) Die USV ging automatisch in den Bypass:

Folgen Sie dem Pfad, indem Sie das Symbol "Betrieb" und dann "An Wechselrichter übertragen" auswählen. Das System wechselt in den Normalmodus

Normalerweise wechselt das System automatisch in den Normalmodus. Diese Funktion wird verwendet, wenn die Frequenz des Bypasses außerhalb des zulässigen Bereichs liegt oder der Wechselrichter nicht mit dem Bypass synchronisiert ist

4.2.4 Umschalten der USV in den Wartungs-Bypass-Modus aus dem Normalmodus

Die folgenden Verfahren können die Last vom Wechselrichterausgang auf den Wartungsbypass übertragen, der für die Wartung der USV verwendet wird.


Übertragen Sie die USV in den Bypass-Modus, wie in Abschnitt 4.2.2 beschrieben.

Entfernen Sie die Abdeckung des Wartungs-Bypass-Leistungsschalters.

Schalten Sie den Wartungs-Bypass-Schalter ein. Und die Last wird über Wartungsbypass und statischen Bypass versorgt.

Schalten Sie nacheinander den Batterieschalter, den Eingangsschalter, den Bypass-Eingangsschalter und den Ausgangsschalter aus.

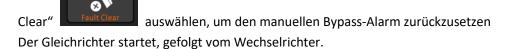
Die Last wird über den Wartungsbypass mit Strom versorgt.

Abb.4-7 die Abdeckung des Wartungs-Bypass-Leistungsschalters

Warnung

Sobald die Abdeckung des Wartungs-Bypass-Leistungsschalters entfernt wird, wechselt das System automatisch in den Bypass-Modus.

Bevor Sie diesen Vorgang ausführen, überprüfen Sie die Meldungen auf dem LCD-Display, um sicherzustellen, dass die Bypass-Versorgung regelmäßig und der Wechselrichter damit synchron ist, um eine kurze Unterbrechung der Stromversorgung der Last nicht zu riskieren.


Gefahr

Auch wenn das LCD ausgeschaltet ist, können die Klemmen von Eingang und Ausgang noch mit Strom versorgt werden.

Warten Sie 10 Minuten, damit sich der Zwischenkreiskondensator vollständig entladen kann, bevor Sie die Abdeckung entfernen.

4.2.5 Schalten der USV aus dem Wartungsbypass-Modus in den Normalmodus

Schalten Sie den Wartungs-Bypass-Schutzschalter aus. Schließen Sie die Abdeckung des Wartungs-Bypass-Schutzschalters. Jetzt wird die Last über den statischen Bypass mit Strom versorgt. Folgen Sie auf dem LCD dem Pfad, indem Sie das Symbol "Operate" auswählen und dann "Fault

Nach etwa 60-90 Sekunden wechselt das System in den Normalmodus

Warnung

Das System bleibt im Bypass-Modus, bis die Abdeckung des Wartungs-Bypass-Leistungsschalters befestigt ist.

4.3 Batteriewartung

Wenn die Batterie längere Zeit nicht entladen wird, muss der Zustand der Batterie geprüft werden. Rufen Sie das Menü "Bedienen" auf, wie in Abb.5-8 gezeigt und wählen Sie das Symbol "Batteriewartung" – das System wechselt in den Batteriemodus zum Batterie testen. Das System entlädt die Batterien, bis der Alarm "Batterie niedrige Spannung" ausgegeben wird. Benutzer können die Entladung mit dem Symbol "Test stoppen" stoppen.

Mit dem Symbol "Batterietest" werden die Batterien etwa 30 Sekunden lang entladen und dann wieder in den Normalmodus versetzt.

Abb.4 -8 Batteriewartung

<u>4.4 EPO</u>

Die EPO-Taste im Bedien- und Anzeigefeld (mit Abdeckung zur Vermeidung von Funktionsstörungen, siehe Abb.4-9) dient zum Abschalten der USV im Notfall (z. B. Feuer, Überschwemmung usw.). Um dies zu erreichen, Drücken Sie einfach die EPO-Taste, und das System schaltet den Gleichrichter und Wechselrichter aus und stoppt sofort die Stromversorgung der Last (einschließlich des Wechselrichters und des Bypass-Ausgangs), und die Batterie stoppt das Laden oder Entladen.

Wenn die Eingabe-Versorgungseinrichtung vorhanden ist, bleibt der USV-Steuerkreis aktiv; Der Ausgang wird jedoch ausgeschaltet. Um die USV vollständig zu isolieren, müssen Benutzer die externe Netzeingangsversorgung der USV öffnen

Warnung

Wenn der EPO ausgelöst wird, wird die Last nicht von der USV gespeist. Vorsicht bei Verwendung der EPO-Funktion.

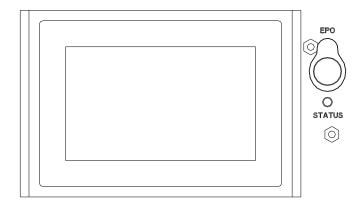


Abb.4-9 EPO-Taste

5. Wartung

In diesem Kapitel wird die USV-Wartung vorgestellt, einschließlich der Wartungsanweisungen für Leistungsteil und Überwachungsbypass sowie die Austauschmethode des Staubfilters.

5.1 Vorsichtsmaßnahmen

Nur Wartungstechniker können die USV warten.

- 1) Warten Sie 10 Minuten, bevor Sie die Abdeckung des Leistungsbereichs oder des Bypasses nach dem Herausziehen aus dem Schrank öffnen
- 2) Verwenden Sie ein Multimeter, um die Spannung zwischen Betriebsteilen und Erde zu messen, um sicherzustellen, dass die Spannung niedriger als die gefährliche Spannung ist, d.h. die Gleichspannung niedriger als 60 VDC und die maximale AC-Spannung niedriger als 42 VAC ist.

5.2 Anweisungen zur Wartung der USV

Zur Wartung der USV siehe Kapitel 4.3.4, um in den Wartungs-Bypass-Modus zu wechseln. Wechseln Sie nach der Wartung wieder in den Normalmodus gemäß Kapitel 4.3.5.

5,3. Anweisungen zur Wartung des Batteriestrangs

Bei wartungsfreien Blei-Säure-Batterien kann die Batterielebensdauer verlängert werden, wenn die Batterie gemäß den Anforderungen gewartet wird. Die Batterielaufzeit wird hauptsächlich durch folgende Faktoren bestimmt:

- Installation. Die Batterie sollte an einem trockenen und kühlen Ort mit guter Belüftung aufbewahrt werden. Direkte Sonneneinstrahlung vermeiden und von Wärmequellen fernhalten. Achten Sie beim Einbau auf den korrekten Anschluss an die Batterien gleicher Spezifikation.
- 2) Temperatur. Die am besten geeignete Lagertemperatur beträg 5 °C bis 25°C, Betrieb 15-25°C.
- 3) Lade-/Entladestrom. Der beste Ladestrom für die Blei-Säure-Batterie beträgt 0,1C. Der maximale Ladestrom für die Batterie kann 0,2C betragen (bei einigen Marken kann er höher sein). Der Entladestrom sollte 0,05C-3C betragen.
- 4) Ladespannung. Die Batterie befindet sich die meiste Zeit im Standby-Zustand. Wenn die Stromversorgung normal ist, lädt das System die Batterie zuerst im Boost-Modus, wenn die Batterie fast geladen ist, wechselt sie in den Zustand der Erhaltungsladung.
- 5) Entladetiefe. Vermeiden Sie häufige Tiefentladungen, die die Lebensdauer der Batterie stark reduzieren. Wenn die USV längere Zeit im Batteriemodus mit geringer Last oder ohne Last läuft, führt dies zu einer Tiefentladung der Batterie.
- 6) Überprüfen Sie regelmäßig. Beobachten Sie, ob eine Anomalie der Batterie vorliegt, messen Sie, ob die Spannung jeder Batterie im Gleichgewicht mit anderen ist. Entladen Sie die Batterie regelmäßig.

Warnung

Häufige Kontrolle ist sehr wichtig!

Überprüfen und vergewissern Sie sich regelmäßig, dass die Batterieverbindung festgezogen ist, und stellen Sie sicher, dass keine ungewöhnliche Hitze von der Batterie erzeugt wird.

Warnung

Wenn eine Batterie ausgelaufen oder beschädigt ist, muss sie ersetzt, in einem schwefelsäurebeständigen Behälter aufbewahrt und gemäß den örtlichen Vorschriften entsorgt werden.

Die Alt-Blei-Säure-Batterie ist eine Art Sondermüll und gehört zu den wichtigsten Verunreinigungen, die von der Regierung kontrolliert werden.

Daher müssen Lagerung, Transport, Verwendung und Entsorgung den nationalen oder lokalen Vorschriften und Gesetzen zur Entsorgung von Sondermüll und Altbatterien oder anderen Standards entsprechen.

Gemäß den nationalen Gesetzen sollten Blei-Säure-Altbatterien recycelt und wiederverwendet werden, und es ist verboten, die Batterien auf andere Weise als Recycling zu entsorgen. Das willentliche Wegwerfen der Alt-Blei-Säure-Batterien oder andere unsachgemäße Entsorgungsmethoden führen zu schweren Umweltverschmutzungen und die Person, die dies tut, trägt die entsprechenden gesetzlichen Verantwortungen.

6. Produktspezifikationen

Dieses Kapitel enthält die Spezifikationen des Produkts, einschließlich der mechanischen Eigenschaften der Umgebung und der elektrischen Eigenschaften.

6.1 Anwendbare Standards

Die USV wurde entwickelt, um den folgenden europäischen und internationalen Standards zu entsprechen:

Tabelle 6-1

Artikel	Normative Referenz
Allgemeine Sicherheitsanforderungen für USV, die in	IEC62040-1-1 EN62040-1
Elektromagnetische Verträglichkeit (EMV) für USV	IEC62040-2 IEC-EN62040-2 (2018)
Methode zur Angabe der Leistungs- und Testanforderungen von USV	IEC62040-3

Hinweis

Die oben genannten Produktnormen enthalten relevante Übereinstimmungsklauseln mit generischen IEC- und EN-Normen für Sicherheit (IEC/EN/AS60950 und IEC/EN 62477-1), elektromagnetische Emission und Störfestigkeit (IEC/EN61000-Serie) und Konstruktion (IEC/EN60146-Serie und 60950 und 62477-1).

6.2 <u>Umwelteigenschaften</u>

Tabelle 6-2

Artikel Einheit		Parameter		
Geräuschpegel bei 1 Meter	dB	58dB @ 100% Last, 55dB @ 45% Last		
Höhe der Arbeiten	m	≤1000, Lastreduzierung 1% bei 100m von 1000m bis 2000m		
Relative Luftfeuchtigkeit	%	0-95, nicht kondensierend		
Betriebstemperatur	°C	10 - 15 KVA: 0-40°C 20-30-40 KVA PF=1: 0-30°C 20-30-40 KVA PF=0,9: 0-40°C Warnung für Batterie wird empfohlen 15-25°C, aufgrund der Batterielebensdauer halbiert sich jede 10°C Erhöhung über 20°C		
USV Speicher- Temperatur	°C	-40 $^{\sim}$ +70, die Batterielebensdauer der Warnung wird halbiert bei jeder Erhöhung um 10 $^{\circ}$ C über 20 $^{\circ}$ C		

6.3 Mechanische Eigenschaften

Tabelle 6-3

Modell	Einhe it	10kVA	15kVA	20kVA	30kVA	40kVA
Abmessung B×T×H	mm	380*840*1400	380*840*1400	380*840*1400	500*940*1400	500*940*1400
Gewicht Ohne Batterien	kg	100	100	100	140	140
MaximalGewicht Batterien enthalten	kg	424kg 3 Saitenbatterien	424kg 3 Saitenbatterien	424kg 3 Saitenbatterien	572kg 4 Saitenbatterien	572kg 4 Saitenbatterien
Farbe				SCHWARZ, RAL 70	21	
Schutzgrad IEC60529				IP20		

6.4 Elektrische Eigenschaften

6.4.1 Elektrische Eigenschaften Eingangsgleichrichter

Tabelle 6-4

Artikel	Einheit	Parameter	
Rastersystem		3Phasen + Neutral + PE, (neutral teilend mit Bypass-Eingang)	
Nenn-AC-	Vac 380/400/415 std=400V		
Eingangsspannungsbereich	Vac	304~478Vac (Leitung-Leitung), Volllast; 228V~304Vac (Leitung-Leitung), Last fällt linear von 100% auf 60% je nach Eingangsspannung	
Nennfrequenz	Hz	50/60	
Eingangsspannungsbereich	Hz	40~70	
Eingangs-Leistungsfaktor		>0,99	
Eingangsstrom THDi	%	<4% (volle lineare Last) 10-15kVA <3% (volle lineare Last) 20-40kVA	

6.4.2 Elektrische Eigenschaften Batterie

Tabelle 6-5

Artikel	Einheit	Parameter
Batterie-Busspannung	Vdc	Angegeben: ±240V (gesamt 480)
Menge an Blei-Säure- Zellen	Nominal	40 Batterien 12V, 240 Zellen 2V (einstellbar 32-44 nur für externe Batterie)
Erhaltungsladespannung	V/Zelle (VRLA)	2,25V / Zelle (wählbar von 2,2V/Zelle ~ 2,35V/Zelle) Konstantstrom- und Konstantspannungslademodus
Ladespannung erhöhen	V/Zelle (VRLA)	2,35V/Zelle (wählbar von: 2.30V/Zelle~2.45V/Zelle) Konstantstrom- und Konstantspannungslademodus
Temperaturkompensation (Option) mV/°C/Zelle 3,0 (wählbar:0		3,0 (wählbar:0~5)
Finale Entladespannung	V/Zelle (VRLA)	1,65V/Zelle (wählbar von: 1.60V/Zelle~ 1,75V/Zelle) @ 0.6C Entladungsstrom 1,75V/Zelle (wählbar von: 1,65V/Zelle ~ 1,8V/Zelle) @ 0,15 C Entladungsstrom (EOD-Spannung ändert sich linear innerhalb des eingestellten Bereichs gemäß Entladestrom)
Batterieladeleistung	kW	wählbar von: 0 bis 20 % * USV-Kapazität
Maximale Akkuladung Strom (40 Batterie)	А	NOVA-10K = 3,7 A einstellbar (maximale einstellung = 20%) NOVA-15K = 5,5 A einstellbar (maximale einstellung = 20%) NOVA-20K = 6,7 A einstellbar (maximale einstellung = 20%) NOVA-30K = 10 A einstellbar (maximale einstellung = 20%) NOVA-40K = 13,3A einstellbar (maximale einstellung = 20%)
Batterie. Ladestrom Werkseinstellungen	А	Der Standardwert liegt zwischen 0,7 und 1,5 A

Hinweis: Der Parameter "PM-Ladestrom-Prozentgrenze %" kann im LCD- oder MTR-SW mit der folgenden Formel eingestellt werden: "PM-Ladestrom-Prozentgrenze %" = (Irch / Imax) x 20 Wo

PM-Ladestrom-Prozentgrenze %" ist der Wert, der in die Einstellung eingegeben werden muss (LCD oder SW).

Irch ist der Ladestrom in A, den Sie einstellen möchten

Imax ist der maximale Batterieladestrom, siehe Wert in der Tabelle oben

Beispiel: USV-Leistung = 20 kVA mit Batteriekapazität = 18 A/h

Wir möchten diese Batterien mit 2A laden, also nach der Formel Irch= 2A

Berechnung: PM-Ladestrom-Prozentgrenze %" = (Irch / Imax) x 20 = 2 / 6,7 x 20 = 6 %

Hinweis

Wenn die verwendete Batterie von der Standardeinstellung 40 (Bereich 32-44) abweicht, stellen Sie sicher, dass die tatsächliche Nummer und die eingestellte Nummer gleich sind, da andernfalls die Batterien beschädigt werden können.

6.4.3 Elektrische Eigenschaften Wechselrichter-Ausgang

Tabelle 6-6

Artikel	Einheit	Parameter	
Nennleistung	kVA	10 / 15 / 20 / 30 / 40	
Leistungsfaktor		1 (siehe Hinweis 1)	
Nenn-AC-Spannung	Vac	220/230/240 (Leitung-N), std=230	
Spannungsgenauigkeit	%	±1,5% (0-100% lineare Last)	
Nennfrequenz	Hz	50/60	
Frequenzregulierung	Hz	50/60±0,1% (Batterie-Modus)	
Synchronisierter Bereich	Hz	Standard \pm 3Hz, Einstellbar \pm 0.5Hz \sim \pm 5Hz	
Synchronisierte Anstiegsrate	Hz/s	Standard 2Hz/s, einstellbar, 0,5 \sim 3	
Ausgangsspannung THDv	%	10-40kVA <1% (lineare Last) 10-15K <5,5% (nicht lineare Last), 20+30+40kVA <6% (nicht lineare Last)	
Überlast	%	<110% 60min; 110%~125%,10min; 125%~150%,1min	
(Hinweis 1) 20-30-40KVA Modell hat dynamische PF, dies ist PF=1 bis 30°C, über 30°C ist es 0,9			

6.4.4 Elektrische Eigenschaften Bypass-Netzeingang

Tabelle 6-7

Artikel	Einheit	Wert	
Nenn-AC-Spannung	Vac	380/400/415 (dreiphasig Vier-Leiter und mit dem Haupteingang	
		des Gleichrichters neutral teilend)	
		<125%, langfristiger Betrieb	
		125% ~ 130% für 10 min;	
Überlast	%	130% ~ 150% für 1 min;	
		150% ~ 400% für 1s;	
		>400%, weniger als 200ms	
Stromstärke des neutralen Kabels	Α	1.7×In	
Nennfrequenz	Hz	50/60	
Umschaltzeit (zwischen Bypass und Wechselrichter)	ms	Synchronisierte Übertragung: 0ms	
Bypass- Spannungsbereich	%	Einstellbar, Standard -20%~+15% Höchstgrenze: +10%, +15%, +20%, +25% Untere Grenze: -10%, -15%, -20%, -30%, -40%	
Bypass-Frequenzbereich	% Hz	Einstellbar, ±1Hz, ±3Hz, ±5Hz	

6.5 Effizienz

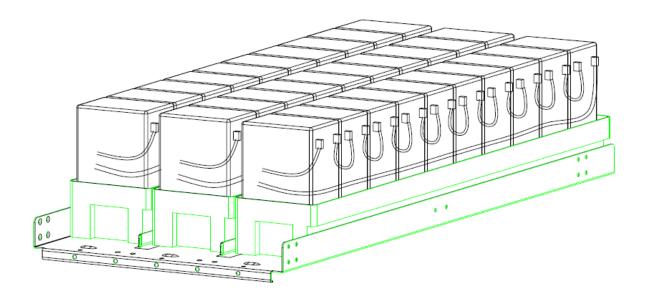
Tabelle 6-8

Nennleistung (kVA)	Einheit	10kVA/15kVA	20kVA/30kVA	40kVA
Normaler Modus (Doppelwandlung)	%	95	95	96
Batterie-Modus (Batterie bei Nennspannung 480 Vdc und voller linearer Last)				
Batterie-Modus	%	94.5	95	96

6.6 Anzeige und Schnittstelle

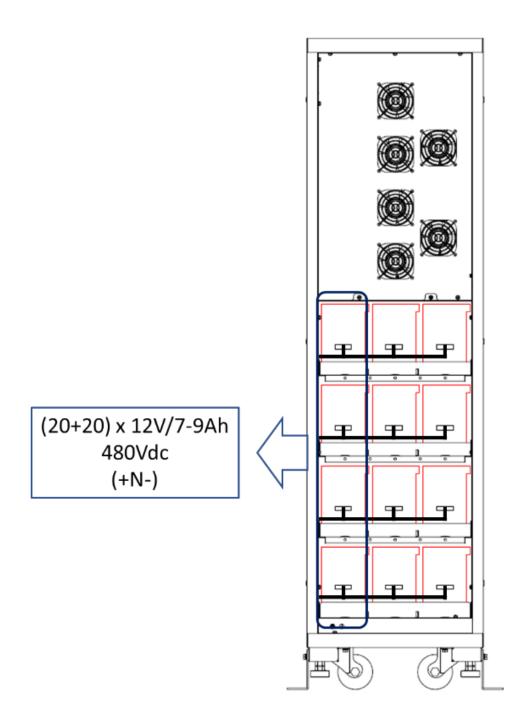
Tabelle 6-9

Anzeige	Berührungsempfindlicher Bildschirm	
Schnittstelle	Standard: RS232, RS485	
Schnittstelle	Option: SNMP	

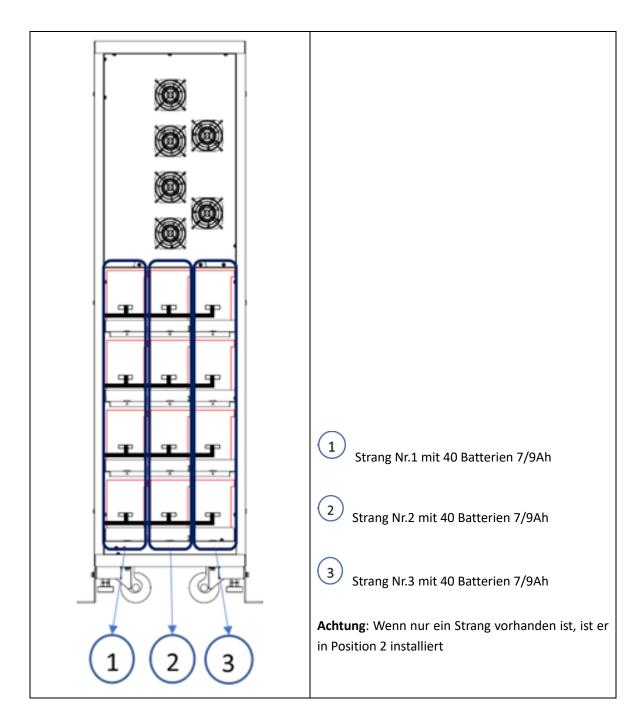

Anhang. A Installation der internen Batterien

Für USV 10kVA & 20kVA, bis 120Stk (3 * 40) 12Vdc 7-9Ah Batterien können installiert werden Für USV 30kVA & 40kVA, bis 160Stk (4 * 40) 12Vdc 7-9Ah Batterien können installiert werden

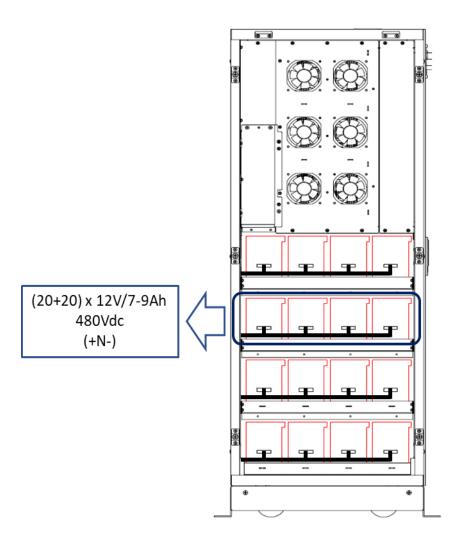
Pro Strang gibt es 40 Batterien, aufgeteilt in 4 Gruppen/Behälter mit je 10 Batterien in Reihe geschaltet mit Mittelschaltung, der Behälter ist von vorne zugänglich.


Die Verbindung zwischen den Gruppen erfolgt über Kabel mit Anderson-Stecker, siehe untenstehende Abbildungen.

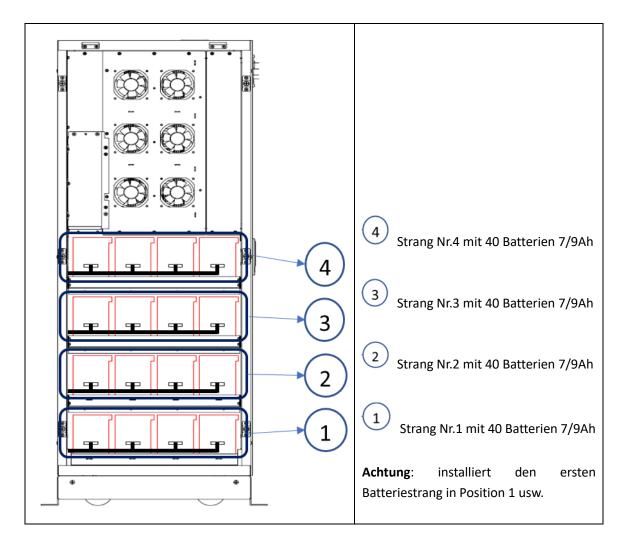
Die Batterien sind in Behälter eingebaut, jeder Behälter hat 10 Batterien 7Ah oder 9Ah, siehe Zeichnung



Für USV 10kVA & 20kVA ist es möglich bis zu 3 Stränge mit 40 Stück 7 oder 9Ah Batterien zu installieren. Für USV 10kVA & 20kVA ist das Minimum ein (1) Strang


Die Verbindungen werden mit elektrischen Kabeln und Anderson-Steckverbindern hergestellt. Verwenden Sie nur Original-Batterie-Kit

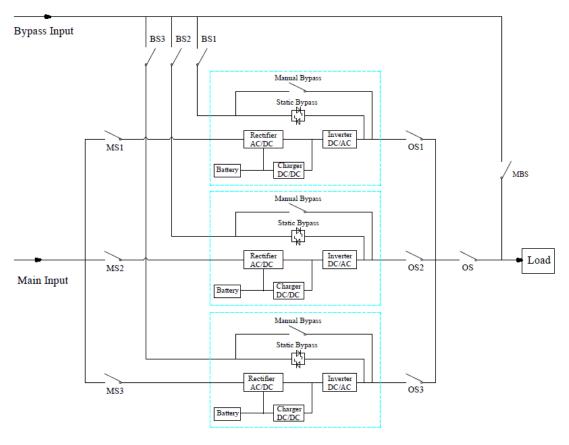
Messen und bestätigen Sie die korrekte Batteriespannung, bevor Sie eine Verbindung zur USV herstellen



Für USV 30kVA & 40kVA ist es möglich bis zu 4 Stränge mit 40 Stück 7 oder 9Ah Batterien in Reihe geschaltet zu installieren.

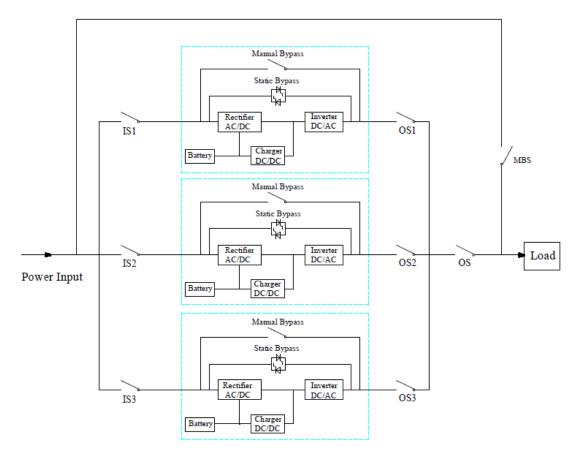
Für USV 30kVA & 40kVA sind das Minimum zwei (2) Stränge

Die Verbindungen werden mit elektrischen Kabeln und Anderson-Steckverbindern hergestellt. Verwenden Sie nur Original-Batterie-Kit


Messen und bestätigen Sie die korrekte Batteriespannung, bevor Sie eine Verbindung zur USV herstellen

Anhang. B Anleitung des Parallelsystems für USV

Die USV kann parallel geschaltet werden; im Allgemeinen sind 2 USVs parallel oder 3 USVs parallel geschaltet. Wenn mehr als 3 USVs parallel geschaltet sind, informieren Sie bitte das Werk im Voraus.

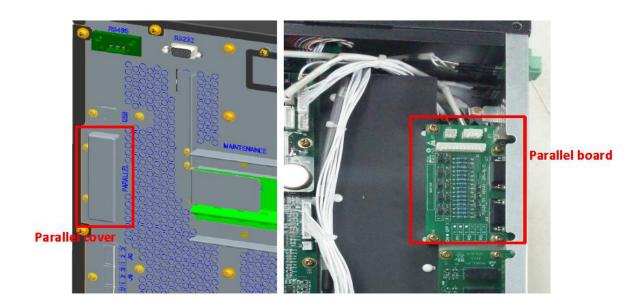

1. Stromkabelanschluss 3 USVs parallel geschaltet.

Die Kabelverbindungszeichnung für 3 USVs parallel (Dual Input)

Hinweis: MS1, MS2 und MS3 sind die Haupteingangsschalter für jede USV, BS1, BS2 und BS3 sind die Bypass-Eingangsschalter, OS1, OS2 und OS3 sind die Ausgangsschalter, OS ist der Ausgangshauptschalter des Stromversorgungssystems, MBS ist der Wartung Bypass-Schalter.

Die Kabelverbindungszeichnung für 3USVs parallel (gemeinsamer Eingang)

Hinweis: IS1, IS2 und IS3 sind die Eingangsschalter für jede USV, OS1, OS2 und OS3 sind die Ausgangsschalter, OS ist der Ausgangshauptschalter des Stromversorgungssystems, MBS ist der Wartung Bypass-Schalter.

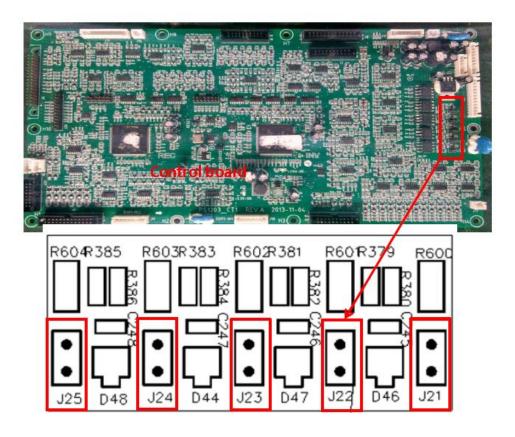

2. Die parallele Einstellung für USV

Im Allgemeinen sollten Benutzer das Werk vor der Bestellung informieren, und das Werk wird die Parallelparameter vor der Lieferung einstellen. Wenn Sie vor Ort von einem Einzelsystem zu einem Parallelsystem wechseln müssen, gehen Sie wie folgt vor.

1) Installieren Sie die Parallelplatine wie folgt

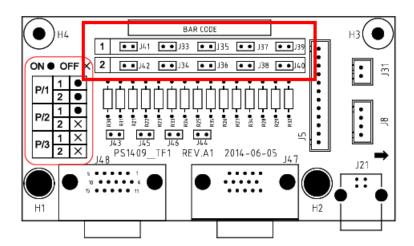
- Entfernen Sie die Abdeckplatte der parallelen Schnittstelle und die Abdeckplatte auf beiden Seiten der USV;
- Befestigen Sie die Parallelplatine mit Schrauben;
- Verbinden Sie J31 auf der Parallelplatine mit J31 auf der Steuerplatine mit dem 2-poligen Kabel;
- Verbinden Sie J5 auf der Parallelplatine mit J5 auf der Steuerplatine mit dem 12-poligen Kabel;
- Verbinden Sie J8 auf der Parallelplatine mit J7 auf der Monitorschnittstelle platine mit dem 4-poligen Kabel.
- Bringen Sie die Abdeckung der USV wieder an.

Hinweis: Bitte beachten Sie die folgenden Bilder.



Parallele Platineninstallation

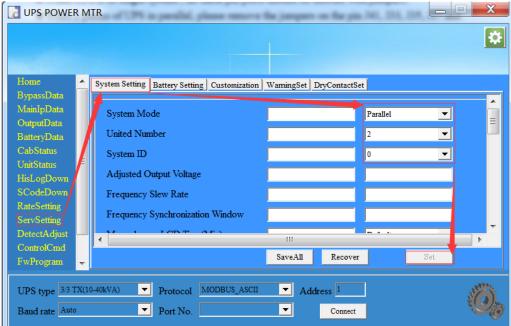
Die Bilder beziehen sich auf das 10-, 15- und 40-K-Modell, die 20-K- und 30-K-Stecker sind gleich, während die Leiterplattenposition unterschiedlich ist.



2) Stellen Sie die Parallelplatine wie folgt ein

Das obige ist die Steuerplatine, finden Sie die Stift-Anschlüsse J21, J22, J23, J24 und J25.

- Wenn sich die USV in einem Einzelsystem befindet, sollten J21-J25 mit Überbrückungen kurzgeschlossen werden.
- Wenn sich die USV in einem Parallelsystem befindet, entfernen Sie bitte die Überbrückungen von J21 bis J25.



Das obige ist die parallele Platine, finden Sie die Stift-Anschlüsse, J41, J33, J35, J37, J39, J42, J34, J36, J38, J40.

- Wenn sich die USV in einem Einzelsystem befindet, sollten alle diese Stift-Anschlüsse mit Überbrückungen kurzgeschlossen werden.
- Wenn 2 USV parallel geschaltet sind, entfernen Sie bitte die Überbrückungen an den Stiften J41, J33, J35, J37 und J39 und halten Sie J42, J34, J36, J38 und J40 mit den Überbrückungen kurzgeschlossen.
- Wenn 3 USV-Einheiten parallel geschaltet sind, entfernen Sie bitte alle oben genannten Überbrückungen.

Oben sehen Sie unsere MTR-Software, verbinden Sie die MTR-SW mit der USV, finden Sie die Einstellungsseite, stellen Sie sie wie unten ein.

2 USV parallel geschaltet

Die erste USV sollte wie folgt eingestellt werden.

Systemmodus: Parallel Einheitsnummer: 2 System-ID: 0

Die zweite USV sollte wie folgt eingestellt werden.

Systemmodus: Parallel Einheitsnummer: 2 System-ID: 1

3 USV parallel geschaltet

Die erste USV sollte wie folgt eingestellt werden.

Systemmodus: Parallel Einheitsnummer: 3

System-ID: 0

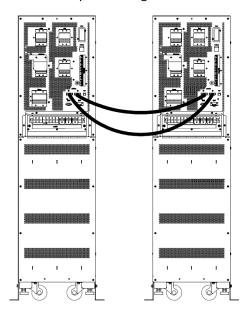
Die zweite USV sollte wie folgt eingestellt werden.

Systemmodus: Parallel Einheitsnummer: 3

System-ID: 1

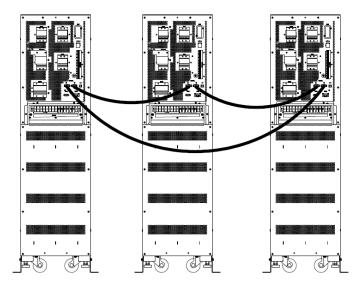
Die erste USV sollte wie folgt eingestellt werden.

Systemmodus: Parallel Einheitsnummer: 3


System-ID: 2

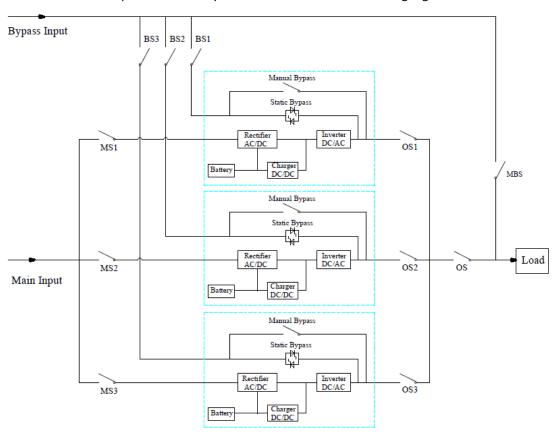
Hinweis: Behalten Sie die anderen Parameter für die USV im Parallelsystem bei.

4) Verbinden Sie die parallelen Signalkabel



Das parallele Signalkabel

Die Signalkabelverbindung für 2 USVs parallel geschaltet

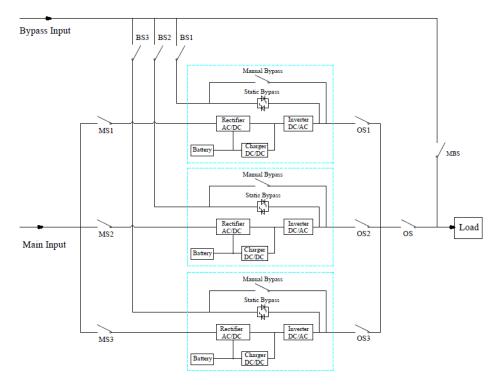


Die Signalkabelverbindung für 3 USVs parallel geschaltet

5) Prüfung für das Parallelsystem

Nachdem alles oben erledigt wurde, gehen Sie bitte wie folgt vor, um das Parallelsystem zu testen. Unten sehen Sie als Beispiel ein Parallelsystem von 3 USVs mit dualem Eingang.

Hinweis: Vor dem Betrieb lassen Sie bitte alle Schalter ausgeschaltet.


- 1) Schließen Sie zuerst OS1 und dann BS1 und MS1, die erste USV startet automatisch. Einzelheiten zum Start finden Sie im Benutzerhandbuch. Etwa 2 Minuten später beendet die erste USV den Start und schließt den Batterieschalter endgültig. Im Moment sollte auf dem Bildschirm kein Alarm angezeigt werden, der Benutzer kann die Informationen auf dem Bildschirm überprüfen und sie sollten mit denen auf dem Typenschild übereinstimmen. Sollte der Start fehlschlagen, wenden Sie sich bitte an den beauftragten Ingenieur oder den Lieferanten.
- 2) Schalten Sie den Batterieschalter aus, und schalten Sie dann BS1 und MS1 aus und schließlich OS1 aus, die erste USV wird vollständig heruntergefahren.
- 3) Betreiben Sie die zweite USV und die dritte USV wie die oben erwähnte erste USV.
- 4) Nach den obigen Vorgängen und der Bestätigung, dass keine Anomalie vorliegt, schließen Sie bitte zuerst OS1, OS2 und OS3 nacheinander, dann schließen Sie BS1, BS2 und BS3 und schließen Sie als drittes MS1, MS2 und MS3. Nach etwa 2 Minuten sollten die 3 USVs starten erfolgreich gleichzeitig und schließen Sie schließlich die Batterieschalter für jede USV, im Moment sollte kein Alarm auf dem Bildschirm erscheinen.
- 5) Führen Sie die Funktion "Übertragung zu Bypass" an der ersten USV wie unten beschrieben aus, die 3 USVs sollten gleichzeitig in den Bypass-Modus wechseln und dann die Funktion "Esc Bypass" betätigen, die 3 USVs sollten wieder in den Inverter-Modus wechseln. Wenn es kein Problem gibt
- 6) Schließen Sie den Hauptausgangsschalter OS, der Start ist abgeschlossen, die Benutzer können ihre Geräte einzeln starten.

4. Die Vorgänge für das Parallelsystem

1) Schalten Sie die USV aus.

Wenn Benutzer eine USV oder alle USVs ausschalten möchten, gehen Sie bitte wie folgt vor.

Schalten Sie zuerst den Batterieschalter aus, dann BS1 und MS1 nacheinander und schließlich OS1 ausschalten, die erste USV wird ausgeschaltet.

Wenn Benutzer die zweite und die dritte USV abschalten möchten, gehen Sie bitte wie oben vor, jedoch beachten, dass die verbleibende Kapazität des Systems die Belastbarkeit aushält.

2) Übertragen des Parallelsystems vom normalen Modus in den Wartungsbypass-Modus.

Bitte wie folgt vorgehen.

- a) Betätigen Sie "Übertragen zu Bypass" auf dem Bildschirm einer beliebigen USV, alle USVs wechseln gleichzeitig in den Bypass-Modus.
- b) Entfernen Sie die Metallplatte am manuellen Bypass-Schalter der aller USVs.
- c) Schalten Sie den Wartungsschalter MBS ein der aller USVs.
- d) Schalten Sie nacheinander alle Batterieschalter aus.
- e) Schalten Sie MS1, MS2 und MS3 (Netzeingang) aus.
- f) Schalten Sie BS1, BS2 und BS3 (Bypass-Eingangsnetz) aus.
- g) Schalten Sie OS1, OS2, OS3 und OS (Ausfahrt) aus. Alle USVs sind ausgeschaltet; die Last wird vom Wartungsbypass versorgt.

3) Bringen Sie das Parallelsystem vom Wartungs-Bypass-Modus wieder in den Normalmodus.

Bitte wie folgt vorgehen.

- a) Schalten Sie OS, OS1, OS2 und OS3 (Ausfahrt) nacheinander ein.
- b) Schalten Sie BS1, BS2 und BS3 nacheinander ein, etwa 20 Sekunden nachdem Sie auf dem Display überprüft haben, dass der statische Bypass jeder USV aktiv ist.
- c) Schalten Sie den Wartungs-Bypass-Schalter MSB aus, Montieren Sie die Metallplatte wieder der aller USVs
- d) Schalten Sie MS1, MS2 und MS3 ein.
- f) Schalten Sie alle Batterieschalter nacheinander ein.
- g) Folgen Sie auf dem LCD dem Pfad, indem Sie das Symbol "Operate" auswählen und dann

"Fault Clear" auswählen, um den manuellen Bypass-Alarm zurückzusetzen Der Gleichrichter startet, gefolgt vom Wechselrichter.

Nach etwa 60-90 Sekunden wechselt das System in den Normalmodus

Warnung

Das System bleibt im Bypass-Modus, bis die Abdeckung des Wartungs-Bypass-Leistungsschalters befestigt ist.

Recyclinginformationen gemäß WEEE

Das Produkt ist mit dem Mülltonnen-Symbol gekennzeichnet. Es weist darauf hin, dass das Produkt am Ende der Lebensdauer dem Recyclingsystem zugeführt werden sollte.

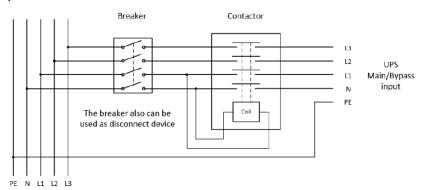
Sie sollten es separat an einer geeigneten Sammelstelle entsorgen und nicht in den normalen Abfall geben.

Die folgende Abbildung zeigt das Mülltonnensymbol, das auf die getrennte Sammlung von Elektro- und Elektronikgeräten (EEE) hinweist.

Der horizontale Balken unter der durchgestrichenen Mülltonne weist darauf hin, dass das Gerät nach Inkrafttreten der Richtlinie im Jahr 2005 hergestellt wurde.

Die Hauptteile des Antriebs können recycelt werden, um natürliche Ressourcen und Energie zu schonen. Produktteile und Materialien sollten demontiert und getrennt werden.

Weitere Informationen zu Umweltaspekten erhalten Sie von Ihrem lokalen Händler. Die Behandlung am Lebensende muss den internationalen und nationalen Vorschriften entsprechen.


Anhang C: Anweisungen zur Rückspannungssicherung

Das Ziel ist es, zu verhindern, dass Energie zurück in das elektrische System fließt, falls die USV während des Batteriebetriebs einen internen Fehler aufweist.

Diese Schutzmaßnahme kann entweder durch einen externen Schütz außerhalb der USV oder durch eine Stromstoßspule realisiert werden, die von einem Kontakt der Trockenkontaktenkarte der USV gesteuert wird.

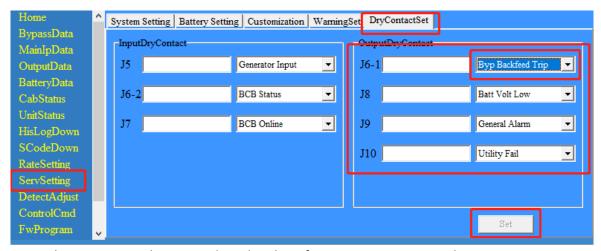
Diese Spule muss den Leistungsschutzschalter am USV-Eingang öffnen.

Beispiel eines Systems mit externem Schütz:

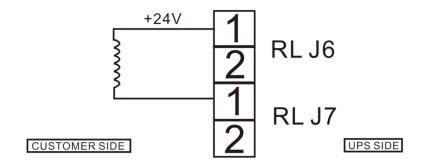
Three phase input system

Hinweis: Bei getrennten Netzen ist das Schema sowohl auf das Eingangsnetz als auch auf das Hilfsnetz (Bypass) anzuwenden.

Immer wenn das Eingangsnetz und/oder das Bypass-Netz ausfällt, öffnet der Schütz, um einen möglichen Rückfluss der Spannung zum Eingangsleistungsschalter zu verhindern.

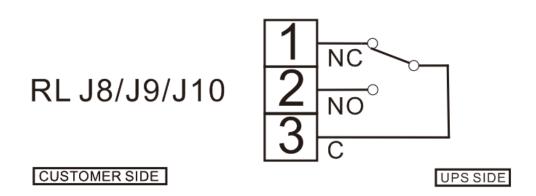

Die Größe des zu verwendenden Schützes muss die maximalen Ströme berücksichtigen, die im Eingangs- und Bypass-Bereich fließen. Diese sind in der folgenden Tabelle zusammengefasst:

Index	10kVA	15kVA	20kVA	30kVA	40kVA
Eingangsnetzstrom (A)	18	28	35	55	70
Hilfsnetzstrom (A)	15	23	30	45	60


Beispiel mit einem Kontakt der Trockenkontaktkarte und einer Stromstoßspule:

In diesem Fall muss über die Software Expert MTR der Ausgangskontakt J6-1 als "BYP Backfeed Trip" programmiert werden (siehe unten):

Die Funktion muss wie oben angegeben über die Software programmiert werden


		Wenn die USV einen Backfeed-Fehler erkennt, wird ein
		Steuersignal "24VDC/20mA" zwischen J6-1 und J7-1 gesendet.
J6	Backfeed-Spule	Dieses Signal wird an die Stromstoßspule des MCB- (oder
		MCCB-)Schutzschalters gesendet, um den Backfeed-Stromkreis
		zu trennen.

Die anderen Trockenausgangskontakte (J8, J9 und J10) können als Fernsignal verwendet werden, um zu wissen, wann der Rückspeisekreis ausgelöst wurde.

		Wenn kein Rückspeisefehler auftritt, ist der Kontakt 1-3
		normalerweise geschlossen und der Kontakt 2-3 normalerweise
RL	Backfeed-Kontakt	geöffnet.
J8/J9/10		Wenn ein Rücklauffehler auftritt, öffnet sich der Kontakt 1-3,
		während der Kontakt 2-3 geschlossen wird.

WARNETIKETT

In allen Fällen muss zur Warnung des Wartungspersonals vor dieser Gefahr auf allen Trennern, Schützen und Schutzvorrichtungen der Stromversorgung das folgende Etikett angebracht werden:

Vor Arbeiten an diesem Stromkreis

- USV-System trennen
- Dann das Vorhandensein gefährlicher Spannungen zwischen allen Klemmen, einschließlich der Schutzerdung, überprüfen.

Rückspannungsgefahr

